New clues as to why mutations in the MYH9 gene cause broad spectrum of disorders in humans

October 28, 2019

New York, NY--October 28, 2019--Myosins are motor proteins that convert chemical energy into mechanical work, generating force and movement. Myosin II generates forces that are essential to drive cell movements and cell shape changes that generate tissue structure. While researchers know that mutations in the genes that encode nonmuscle myosin II lead to diseases, including severe congenital defects as well as blood platelet dysfunction, nephritis, and deafness in adults, they do not fully understand the mechanisms that translate altered myosin activity into specific changes in tissue organization and physiology.

A team of researchers led by Karen Kasza, Clare Boothe Luce Assistant Professor of Mechanical Engineering, used the Drosophila embryo to model human disease mutations that affect myosin motor activity. Through in vivo imaging and biophysical analysis, they demonstrated that engineering human MYH9-related disease mutations into Drosophila myosin II produces motors with altered organization and dynamics that fail to drive rapid cell movements, resulting in defects in epithelial morphogenesis. The study--the first to demonstrate that these mutations result in slower cell movements in vivo--was published October 15, 2019, by PNAS.

"It's not currently possible to watch what happens at the cell level when these genes are mutated in humans, and it's still really difficult to do this in mammalian model organisms like mice," says Kasza, the study's lead author who began the research as a postdoctoral fellow at the Sloan Kettering Institute and continued it when she joined Columbia Engineering in 2016.

Because there are so many similarities between the myosin II protein in humans and in fruit flies, Kasza's approach was to start by tackling how to "watch" the effects of myosin II mutations in fruit flies. Her group engineered the human disease mutations into fruit fly myosin and then observed how this affected the behaviors of the proteins, cells, and tissues in the organism.

They used high-resolution confocal fluorescence imaging to take movies of the process, together with biophysical approaches such as laser ablation, or laser nano-dissection, to measure the forces generated by the mutated myosin II motor proteins in vivo.

Kasza found that, while the mutated myosin II motor proteins actually went to the proper places inside cells and were able to generate force, the fine-scale organization of the myosin proteins and the speed of their movement inside cells were different than for the normal wild-type myosin protein. The team saw slower movements of cells within tissues that brought about abnormalities in embryo shape during development.

"By 'watching' how cells move and generate forces inside living tissues, we've uncovered new clues as to why mutations in the MYH9 gene cause a broad spectrum of disorders in humans." Kasza observes. "Our work sheds new light on how motor proteins generate forces inside living tissues and on how genetic factors alter these forces to result in disease. This mechanistic understanding will help us better understand these diseases and could lead to new diagnostic or therapeutic strategies down the road."

The researchers are now working on new approaches to very precisely manipulate the forces generated by myosin motors inside living cells and tissues. These new tools will help the team to uncover how mechanical forces influence biochemical processes that control cell movements and cell fate. These studies will be essential to better understanding how dysregulation of mechanical forces contributes to disease.
-end-
About the Study

The study is titled "Cellular defects resulting from disease-related myosin II mutations in Drosophila."

Authors are: Karen E. Kasza1,2,; Sara Supriyatno1; and Jennifer A. Zallen1.

1Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute;

2Department of Mechanical Engineering, Columbia Engineering.

The study was supported by NIH/NIGMS R01 grant GM102803 to JAZ. KEK holds a Career Award at the Scientific Interface from the Burroughs Wellcome Fund, a Clare Boothe Luce Professorship, and a Packard Fellowship. JAZ is an investigator of the Howard Hughes Medical Institute.

The authors declare no financial or other conflicts of interest.

LINKS:

Paper: https://doi.org/10.1073/pnas.1909227116

DOI: 10.1073/pnas.1909227116

https://www.pnas.org/

http://engineering.columbia.edu/

https://engineering.columbia.edu/faculty/karen-kasza

https://me.columbia.edu/

Columbia Engineering

Columbia Engineering, based in New York City, is one of the top engineering schools in the U.S. and one of the oldest in the nation. Also known as The Fu Foundation School of Engineering and Applied Science, the School expands knowledge and advances technology through the pioneering research of its more than 220 faculty, while educating undergraduate and graduate students in a collaborative environment to become leaders informed by a firm foundation in engineering. The School's faculty are at the center of the University's cross-disciplinary research, contributing to the Data Science Institute, Earth Institute, Zuckerman Mind Brain Behavior Institute, Precision Medicine Initiative, and the Columbia Nano Initiative. Guided by its strategic vision, "Columbia Engineering for Humanity," the School aims to translate ideas into innovations that foster a sustainable, healthy, secure, connected, and creative humanity.

Columbia University School of Engineering and Applied Science

Related Proteins Articles from Brightsurf:

New understanding of how proteins operate
A ground-breaking discovery by Centenary Institute scientists has provided new understanding as to the nature of proteins and how they exist and operate in the human body.

Finding a handle to bag the right proteins
A method that lights up tags attached to selected proteins can help to purify the proteins from a mixed protein pool.

Designing vaccines from artificial proteins
EPFL scientists have developed a new computational approach to create artificial proteins, which showed promising results in vivo as functional vaccines.

New method to monitor Alzheimer's proteins
IBS-CINAP research team has reported a new method to identify the aggregation state of amyloid beta (Aβ) proteins in solution.

Composing new proteins with artificial intelligence
Scientists have long studied how to improve proteins or design new ones.

Hero proteins are here to save other proteins
Researchers at the University of Tokyo have discovered a new group of proteins, remarkable for their unusual shape and abilities to protect against protein clumps associated with neurodegenerative diseases in lab experiments.

Designer proteins
David Baker, Professor of Biochemistry at the University of Washington to speak at the AAAS 2020 session, 'Synthetic Biology: Digital Design of Living Systems.' Prof.

Gone fishin' -- for proteins
Casting lines into human cells to snag proteins, a team of Montreal researchers has solved a 20-year-old mystery of cell biology.

Coupled proteins
Researchers from Heidelberg University and Sendai University in Japan used new biotechnological methods to study how human cells react to and further process external signals.

Understanding the power of honey through its proteins
Honey is a culinary staple that can be found in kitchens around the world.

Read More: Proteins News and Proteins Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.