Research lowers errors for using brain signals to control a robot arm

October 28, 2020

By measuring brain signals and implementing a clever feedback scheme, researchers from India and the UK have reduced the positional error in brain-controlled robot arms by a factor of 10, paving the way to greatly enhancing the quality of life for people suffering from strokes and neuro-muscular disorders.

Brain-computer interfaces (BCI) have seen a large influx of research in an effort to allow precise and accurate control of physical systems, such as position control of robotic arms, using only signals generated from the user's brain. Existing brain-computer interfaces, however, are hindered by two major challenges. First, most of the existing routines for BCI utilize open-loop control. In other words, the routines do not incorporate any feedback during the brain signal-driven movement to correct for any errors. This results in the failure of the system to take corrective actions and leads to large positional errors, such as a robot arm overshooting the desired position and pose. Second, contemporary BCI are designed to respond to inputs sequentially without finer adjustments, leading to further errors in positional control. Additionally, many BCI utilize multiple sensors to drive the functionality of the device under control. Sensors such as infrared spectroscopy, electroencephalography (EEG), and functional magnetic resonance imaging may be used in combination to process signals from the brain.

In this study, published in IEEE/CAA Journal of Automatica Sinica, researchers relied solely on EEG, due to its non-invasiveness, fast response time, and low cost. By using sophisticated processing techniques, the researchers were able to partition different brain signals from the EEG necessary to control a robot arm. The team then made use of a well-known brain signal, the P300, which appears when a subject notices a significant but rare stimulus. In this case, when the subject notices the robotic arm does not reach the position they originally desired.

"The P300 is used to freeze the current motion of the robotic arm," said Amit Konar, Professor in the Department of Electronics and Tele-Communication Engineering, Jadavpur University and co-author of the study. "Since elicitation and detection of the P300 signal requires a finite amount of time, the robotic link crosses the target position by a small amount before motion is stopped. The link is then moved in the reverse direction of the last motion before it is stopped."

Each subsequent stoppage and reversal of the robotic link reduces the speed at which the arm is moving, until a minimum speed is met and the movement ceases. By introducing P300 brain responses to the arm movement via a feedback mechanism, the team was able to bring the error of arm movements down from 2.1% to 0.20% when compared to the previous state of the art BCI.

The team plans to build on their BCI design by developing a more robust, noise-insensitive control interface, moving ever closer to realizing sophisticated, mind controlled physical symptoms that will drastically improve the quality of life of individuals with neuro-muscular disorders.
Fulltext of the paper is available:

IEEE/CAA Journal of Automatica Sinica aims to publish high-quality, high-interest, far-reaching research achievements globally, and provide an international forum for the presentation of original ideas and recent results related to all aspects of automation.

The first Impact Factor of IEEE/CAA Journal of Automatica Sinica is 5.129, ranking among Top 17% (11/63, SCI Q1) in the category of Automation & Control Systems, according to the latest Journal Citation Reports released by Clarivate Analytics in 2020. In addition, its latest CiteScore is 8.3, and has entered Q1 in all three categories it belongs to (Information System, Control and Systems Engineering, Artificial Intelligence) since 2018.

Why publish with us: Fast and high quality peer review; Simple and effective online submission system; Widest possible global dissemination of your research; Indexed in SCIE, EI, IEEE, Scopus, Inspec. JAS papers can be found at or

Chinese Association of Automation

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to