Performance test for neural interfaces

October 28, 2020

How can scientists measure and define the performance of neural electrodes if there are no uniform standards? Freiburg microsystems engineer Dr. Maria Asplund together with Dr. Christian Böhler and Prof. Dr. Thomas Stieglitz, as well as Prof. Dr. Luciano Fadiga and Dr. Stefano Carli from the Italian Institute of Technology at the University of Ferrara, Italy, have developed guidelines to standardize the testing of the performance of electrodes for neural interfaces and bioelectronic systems. The researchers have published their tutorial in Nature Protocols.

Implantable neural interface extensions increase opportunities for neuroscientists to study the nervous system including the brain, and to develop potential treatments for diseases such as epilepsy and multiple sclerosis as well as for neurological disorders such as paralysis and loss of speech after stroke. This gives the electrodes a key role, as they form the physical interface between the technical system and the biological cells. Nevertheless there is currently no general agreement on how best to assess and compare electrodes in the laboratory, or how to estimate and predict their efficiency when receiving and stimulating electrical signals after implantation.

In their tutorial the researchers present and critically discuss the key performance tests for characterizing neural interface electrodes. They also explain how they interpret the tests and implement them in scientific procedures, and the limits on this.

"Without generally accepted performance tests it's difficult to evaluate the many proposals for electrode materials in the literature and to determine where we should focus efforts," Asplund explains. "We're proposing a uniform standard, in order to enable transparent reporting on electrode performance and promote an efficient scientific process. In the end we want to speed up implementation in clinical practice."
-end-
Original publication

Boehler, C., Carli, S., Fadiga, L., Stieglitz, T., Asplund, M. (2020): Tutorial: guidelines for standardized performance tests for electrodes intended for neural interfaces and bioelectronics. In: Nature Protocols. DOI: 10.1038/s41596-020-0389-2

Contact:

Department of Microsystems Engineering (IMTEK)
University of Freiburg

University of Freiburg

Related Electrodes Articles from Brightsurf:

Performance test for neural interfaces
Freiburg researchers develop guidelines to standardize analysis of electrodes.

The perfect angle for e-skin energy storage
Researchers at DGIST have found an inexpensive way to fabricate tiny energy storage devices that can effectively power flexible and wearable skin sensors along with other electronic devices, paving the way towards remote medical monitoring & diagnoses and wearable devices.

Vacancy dynamics on CO-covered Pt(111) electrodes
USTC reported in situ video-STM observations of additional point defects in the presence of this dynamic CO adlayer.

Using tiny electrodes to measure electrical activity in bacteria
Scientists at Laboratory of Organic Electronics, Linköping University, have developed an organic electrochemical transistor that they can use to measure and study in fine detail a phenomenon known as extracellular electron transfer in which bacteria release electrons.

Flow-through electrodes make hydrogen 50 times faster
Duke chemists tested three new materials as a porous, flow-through electrode to make hydrogen from electrolysis.

Novel electric impulses relieve the pain
Chronic pain can be reduced by stimulating the vagus nerve in the ear with electrodes.

Visualization of functional components to characterize optimal composite electrodes
Researchers have developed a visualization method that will determine the distribution of components in battery electrodes using atomic force microscopy.

Electrolysis: Chemists have discovered how to produce better electrodes
Another step forward for renewable energies: The production of green hydrogen could be even more efficient in the future.

KIST develops large-scale stretchable and transparent electrodes
A Korean research team has developed a large-scale stretchable and transparent electrode for the stretchable display.

Key progress on the MRI compatible DBS electrodes and simultaneous DBS-fMRI
Recently, collaboration between Dr. Duan Xiaojie's group (Department of Biomedical Engineering, College of Engineering, Peking University) and Dr.

Read More: Electrodes News and Electrodes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.