Weak equivalence principle violated in gravitational waves

October 28, 2020

The Weak Equivalence Principle (WEP) is a key aspect of classical physics. It states that when particles are in freefall, the trajectories they follow are entirely independent of their masses. However, it is not yet clear whether this property also applies within the more complex field of quantum mechanics. In new research published in EPJ C, James Quach at the University of Adelaide, Australia, proves theoretically that the WEP can be violated by quantum particles in gravitational waves - the ripples in spacetime caused by colossal events such as merging black holes.

As well as resolving a long-standing debate in quantum theory, Quach's findings could lead to the development of advanced new materials, including fluids with infinite conductivity and zero viscosity. These could be used as advanced gravitational wave detectors and may even lead to devices which can mirror gravitational waves and harvest their energy. Quach based his approach around a principle named 'Fisher information' - a way of measuring how much information an observable random variable carries about a particular unknown parameter. Here, the random variable describes the position of a quantum particle in a gravitational field, while the unknown parameter is its mass. If the WEP were obeyed, the Fisher information should be zero in this case.

Through his calculations, Quach rewrote an equation describing the WEP for freely falling quantum particles, to incorporate their Fisher information. He showed that while these particles obey the WEP in static gravitational fields, their trajectories can indeed give away information about their mass when they pass through gravitational waves. For the first time, the calculation precisely characterises how the WEP can be violated by quantum particles, and provides key insights for future studies searching for the violation through real experiments.
-end-
Reference

J Q Quach (2020), Fisher information and the weak equivalence principle of a quantum particle in a gravitational wave, European Physical Journal C 80:987, DOI 10.1140/epjc/s10052-020-08530-6

Springer

Related Gravitational Waves Articles from Brightsurf:

Weak equivalence principle violated in gravitational waves
New research published in EPJ C proves theoretically that the Weak Equivalence Principle can be violated by quantum particles in gravitational waves - the ripples in spacetime caused by colossal events such as merging black holes.

Remembrance of waves past: memory imprints motion on scattered waves
Now, it appears that between relativity and the classical (stationary) wave regime, there exists another regime of wave phenomena, where memory influences the scattering process.

New populations of black holes revealed by gravitational waves
The gravitational wave detectors LIGO and Virgo have just chalked up their biggest catch yet, a black hole 142 times the mass of the Sun, resulting from the merger of two ''lighter'' black holes.

Tabletop quantum experiment could detect gravitational waves
Tiny diamond crystals could be used as an incredibly sensitive and small gravitational detector capable of measuring gravitational waves, suggests new UCL-led research.

Gravitational waves could prove the existence of the quark-gluon plasma
According to modern particle physics, matter produced when neutron stars merge is so dense that it could exist in a state of dissolved elementary particles.

X-rays and gravitational waves will combine to illuminate massive black hole collisions
A new study by a group of researchers at the University of Birmingham has found that collisions of supermassive black holes may be simultaneously observable in both gravitational waves and X-rays at the beginning of the next decade.

Quantum expander for gravitational-wave observatories
Gravitational-wave detectors use ultra-stable laser light stored in optical cavities to achieve the high sensitivity for detecting gravitational-wave signals from merging binary black holes and neutron stars.

Gravitational lensing provides a new measurement of the expansion of the universe
Amid ongoing uncertainty around the value of the Hubble Constant, uncertainty largely created by issues around measuring distances to objects in the galaxy, scientists who used a new distance technique have derived a different Hubble value, one 'somewhat higher than the standard value,' as Tamara Davis describes it in a related Perspective.

Gravitational waves leave a detectable mark, physicists say
New research shows that gravitational waves leave behind plenty of 'memories' that could help detect them even after they've passed.

DIY gravitational waves with 'BlackHoles@Home'
Researchers hoping to better interpret data from the detection of gravitational waves generated by the collision of binary black holes are turning to the public for help.

Read More: Gravitational Waves News and Gravitational Waves Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.