Artificial intelligence-based algorithm for the early diagnosis of Alzheimer's

October 28, 2020

Alzheimer's disease (AD) is a neurodegenerative disorder that affects a significant proportion of the older population worldwide. It causes irreparable damage to the brain and severely impairs the quality of life in patients. Unfortunately, AD cannot be cured, but early detection can allow medication to manage symptoms and slow the progression of the disease.

Functional magnetic resonance imaging (fMRI) is a noninvasive diagnostic technique for brain disorders. It measures minute changes in blood oxygen levels within the brain over time, giving insight into the local activity of neurons. Despite its advantages, fMRI has not been used widely in clinical diagnosis. The reason is twofold. First, the changes in fMRI signals are so small that they are overly susceptible to noise, which can throw off the results. Second, fMRI data are complex to analyze. This is where deep-learning algorithms come into the picture.

In a recent study published in the Journal of Medical Imaging, scientists from Texas Tech University employed machine-learning algorithms to classify fMRI data. They developed a type of deep-learning algorithm known as a convolutional neural network (CNN) that can differentiate among the fMRI signals of healthy people, people with mild cognitive impairment, and people with AD.

CNNs can autonomously extract features from input data that are hidden to human observers. They obtain these features through training, for which a large amount of pre-classified data is needed. CNNs are predominantly used for 2D image classification, which means that four-dimensional fMRI data (three spatial and one temporal) present a challenge. fMRI data are incompatible with most existing CNN designs.

To overcome this problem, the researchers developed a CNN architecture that can appropriately handle fMRI data with minimal pre-processing steps. The first two layers of the network focus on extracting features from the data solely based on temporal changes, without regard for 3D structural properties. Then, the three subsequent layers extract spatial features at different scales from the previously extracted time features. This yields a set of spatiotemporal characteristics that the final layers use to classify the input fMRI data from either a healthy subject, one with early or late mild cognitive impairment, or one with AD.

This strategy offers many advantages over previous attempts to combine machine learning with fMRI for AD diagnosis. Harshit Parmar, doctoral student at Texas Tech University and lead author of the study, explains that the most important aspect of their work lies in the qualities of their CNN architecture. The new design is simple yet effective for handling complex fMRI data, which can be fed as input to the CNN without any significant manipulation or modification of the data structure. In turn, this reduces the computational resources needed and allows the algorithm to make predictions faster.

Can deep learning methods improve the field of AD detection and diagnosis? Parmar thinks so. "Deep learning CNNs could be used to extract functional biomarkers related to AD, which could be helpful in the early detection of AD-related dementia," he explains.

The researchers trained and tested their CNN with fMRI data from a public database, and the initial results were promising: the classification accuracy of their algorithm was as high as or higher than that of other methods.

If these results hold up for larger datasets, their clinical implications could be tremendous. "Alzheimer's has no cure yet. Although brain damage cannot be reversed, the progression of the disease can be reduced and controlled with medication," according to the authors. "Our classifier can accurately identify the mild cognitive impairment stages which provide an early warning before progression into AD."
Read the original article in the Journal of Medical Imaging: H. Parmar et al. "Spatiotemporal feature extraction and classification of Alzheimer's disease using deep learning 3D-CNN for fMRI data," J. Med. Imag. 7(5), 056001 (2020), doi 10.1117/1.JMI.7.5.056001.

SPIE--International Society for Optics and Photonics

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to