Nucleus accumbens recruited by cocaine, sugar are different

October 28, 2020

Nucleus accumbens in the brain play a central role in the risk-reward circuit. Their operation is based chiefly on three essential neurotransmitters: dopamine, which promotes desire; serotonin, whose effects include satiety and inhibition; and glutamate, which drives goal-directed behaviors and responses to reward-associated cues and contexts.

In a study using genetically modified mice, a University of Wyoming faculty member found that the nucleus accumbens recruited by cocaine use are largely distinct from nucleus accumbens recruited by sucrose, or table sugar. Because they are separate, this poses the possibility that drug use can be addressed without affecting biologically adaptive seeking of reward.

"We established that, in the nucleus accumbens, a key brain region of reward processing, the neuronal ensembles -- a sparse network of neurons activated simultaneously -- are reward-specific, and sucrose and cocaine ensembles are mostly nonoverlapping," says Ana Clara Bobadilla, a UW assistant professor in the School of Pharmacy and in the WWAMI (Washington, Wyoming, Alaska, Montana and Idaho) Medical Education Program.

Bobadilla is lead author of a paper, titled "Cocaine and Sucrose Rewards Recruit Different Seeking Ensembles in the Nucleus Accumbens Core," that was published in the Sept. 28 issue of Molecular Psychiatry. The journal publishes work aimed at elucidating biological mechanisms underlying psychiatric disorders and their treatment. The emphasis is on studies at the interface of pre-clinical and clinical research, including studies at the cellular, molecular, integrative, clinical, imaging and psychopharmacology levels.

Bobadilla conducted the research while completing her postdoctoral work at the Medical University of South Carolina. The project began in mid-2017. One contributor to the study is now working at the University of Colorado Anschutz Medical Campus.

Currently, the recruitment process within each reward-specific ensemble is unknown, she says. However, using molecular biology tools, Bobadilla was able to identify what type of cells was recruited in both the cocaine and sucrose ensemble.

These cells are known as GABAergic projection neurons, also called medium spiny neurons. They comprise 90 percent to 95 percent of the neuronal population with the nucleus accumbens. These medium spiny neurons express the dopamine D1 or D2 receptor.

The study determined the sucrose and cocaine ensembles recruited mostly D1 receptor expressing medium spiny neurons. These results are in line with the general understanding in the field that activation of the D1 pathway promotes reward seeking, while D2 pathway activation can lead to aversion or reduced seeking, Bobadilla says.

"In humans, drugs are rarely used in the vacuum. Most of us have complex lives including lots of sources of nondrug rewards, such as food, water, social interaction or sex," Bobadilla explains. "Like drugs, these rewards drive and influence our behavior constantly. The dual cocaine and sucrose model used in this study allows us to characterize the cocaine-specific ensemble after the mice experienced sucrose, another type of competing reward.

"It is a more complex model, but one that is closer to what occurs in people suffering from substance use disorders, who fight competing rewards daily," she adds.

Bobadilla is now focused on the question of how cells are recruited in ensembles. Additionally, she aims to address another fundamental question in addiction research: whether the same network-specific mechanisms underlie the seeking of all drug rewards.

"All drugs of abuse share high probability of relapse," she says. "However, each class of addictive drug displays different acute pharmacology and synaptic plasticity. We are now investigating if reward-specific properties of ensembles can explain these differences."
The study was funded, in part, by Bobadilla's postdoctoral mentor, Peter Kalivas, a professor and chair of neuroscience at the Medical University of South Carolina, and by a National Institutes of Health Pathway to Independence Award Bobadilla obtained in early 2019.

University of Wyoming

Related Cocaine Articles from Brightsurf:

Sleep-deprived mice find cocaine more rewarding
Sleep deprivation may pave the way to cocaine addiction. Too-little sleep can increase the rewarding properties of cocaine, according to new research in mice published in eNeuro.

Nucleus accumbens recruited by cocaine, sugar are different
In a study using genetically modified mice, a University of Wyoming faculty member found that the nucleus accumbens recruited by cocaine use are largely distinct from nucleus accumbens recruited by sucrose, or table sugar.

Astrocytes build synapses after cocaine use in mice
Drugs of abuse, like cocaine, are so addictive due in part to their cellular interaction, creating strong cellular memories in the brain that promote compulsive behaviors.

Of all professions, construction workers most likely to use opioids and cocaine
Construction workers are more likely to use drugs than workers in other professions, finds a study by the Center for Drug Use and HIV/HCV Research (CDUHR) at NYU College of Global Public Health.

Chronic cocaine use modifies gene expression
Chronic cocaine use changes gene expression in the hippocampus, according to research in mice recently published in JNeurosci.

Blocking dopamine weakens effects of cocaine
Blocking dopamine receptors in different regions of the amygdala reduces drug seeking and taking behavior with varying longevity, according to research in rats published in eNeuro.

Born to run: just not on cocaine
A study finds a surprising response to cocaine in a novel strain of mutant mice -- they failed to show hyperactivity seen in normal mice when given cocaine and didn't run around.

Cocaine adulterant may cause brain damage
People who regularly take cocaine cut with the animal anti-worming agent levamisole demonstrate impaired cognitive performance and a thinned prefrontal cortex.

Setting affects pleasure of heroin and cocaine
Drug users show substance-specific differences in the rewarding effects of heroin versus cocaine depending on where they use the drugs, according to a study published in JNeurosci.

One in 10 people have traces of cocaine or heroin on their fingerprints
Scientists have found that drugs are now so prevalent that 13 percent of those taking part in a test were found to have traces of class A drugs on their fingerprints -- despite never using them.

Read More: Cocaine News and Cocaine Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to