Chemical process provides new source for alternative fuels

October 28, 1998

RICHLAND, Wash. - A catalytic process developed at the Department of Energy's Pacific Northwest National Laboratory will create a compound used in a new type of alternative fuel while broadening the applications of a chemical used in commercial processes.

Scientists at Pacific Northwest have created the first-ever multi-step catalytic process that converts levulinic acid, a compound derived from waste cellulosic materials, into an alternative fuel component called methyltetrahydrofuran, or MTHF. MTHF would be used with ethanol and pentanes from natural gas liquids as the P-series alternative fuel under a recent DOE proposal. The proposal seeks to meet Energy Policy Act mandates for agencies with a fleet of cars and trucks.

"Our system incorporates multiple chemical reaction steps into one process and creates greater yields than previously available," said Doug C. Elliott, principal investigator and staff scientist with Pacific Northwest's chemical process development group. "It represents a new ability to use levulinic acid in creating environmentally friendly products."

This catalytic process possesses high yield capacity, which means less waste and fewer byproducts. Lab tests indicate an 83 percent yield on a theoretical (molar) basis, equivalent to a yield of nearly 110 gallons of MTHF for every 100 gallons of levulinic acid. On a weight basis, the yield is 63 pounds of MTHF for every 100 pounds of levulinic acid.

DOE has funded the research with about $185,000 over the last two years. An additional $40,000 has been provided by research partners Biofine Inc., of Waltham, Mass., and the New York State Energy Research and Development Authority.

The project is one of several in the alternative feedstock research area that is being pursued through Pacific Northwest's Agriculture and Food Processing Initiative. Pacific Northwest uses levulinic acid produced by Biofine. Levulinic acid is a platform chemical that can be converted into a variety of commercial chemicals, such as solvents and pesticides.

The catalytic process developed by Pacific Northwest is conducted at elevated temperatures and pressures inside a catalytic, continuous flow reactor. Levulinic acid is pumped into a tube, where it is warmed to a range of 40 degrees Celsius then mixed with hydrogen. Both compounds then are mixed together with a catalyst in the reactor. A series of chemical reactions takes place, including multiple hydrogenations (three moles of hydrogen per mole of levulinic acid) and two dehydration reaction steps, to create MTHF.

"Industry has not pursued these conversions of levulinic acid previously because of its high cost," Elliott said.

However, Biofine has created a patented process that produces levulinic acid at low cost by breaking down cellulosic waste, such as paper mill sludge or municipal solid waste. This development makes it affordable for industry to seek new uses of levulinic acid, such as the MTHF application.

Pacific Northwest's project is part of a larger DOE program to create value-added, environmentally friendly products. DOE and the New York State Energy Research and Development Authority have paid Biofine $5 million to construct and operate a full-scale demonstration plant for its new levulinic acid process. DOE's National Renewable Energy Laboratory of Golden, Colo., and Chemical Industry Services Inc. of West Lafayette, Ind., also are working with Biofine on alternative uses of levulinic acid.

Pacific Northwest is one of DOE's nine multiprogram national laboratories and conducts research in the fields of environment, energy, health sciences and national security. Battelle, based in Columbus, Ohio, has operated Pacific Northwest for DOE since 1965.
-end-


DOE/Pacific Northwest National Laboratory

Related Energy Articles from Brightsurf:

Energy System 2050: solutions for the energy transition
To contribute to global climate protection, Germany has to rapidly and comprehensively minimize the use of fossil energy sources and to transform the energy system accordingly.

Cellular energy audit reveals energy producers and consumers
Researchers at Gladstone Institutes have performed a massive and detailed cellular energy audit; they analyzed every gene in the human genome to identify those that drive energy production or energy consumption.

First measurement of electron energy distributions, could enable sustainable energy technologies
To answer a question crucial to technologies such as energy conversion, a team of researchers at the University of Michigan, Purdue University and the University of Liverpool in the UK have figured out a way to measure how many 'hot charge carriers' -- for example, electrons with extra energy -- are present in a metal nanostructure.

Mandatory building energy audits alone do not overcome barriers to energy efficiency
A pioneering law may be insufficient to incentivize significant energy use reductions in residential and office buildings, a new study finds.

Scientists: Estonia has the most energy efficient new nearly zero energy buildings
A recent study carried out by an international group of building scientists showed that Estonia is among the countries with the most energy efficient buildings in Europe.

Mapping the energy transport mechanism of chalcogenide perovskite for solar energy use
Researchers from Lehigh University have, for the first time, revealed first-hand knowledge about the fundamental energy carrier properties of chalcogenide perovskite CaZrSe3, important for potential solar energy use.

Harvesting energy from walking human body Lightweight smart materials-based energy harvester develop
A research team led by Professor Wei-Hsin Liao from the Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong (CUHK) has developed a lightweight smart materials-based energy harvester for scavenging energy from human motion, generating inexhaustible and sustainable power supply just from walking.

How much energy do we really need?
Two fundamental goals of humanity are to eradicate poverty and reduce climate change, and it is critical that the world knows whether achieving these goals will involve trade-offs.

New discipline proposed: Macro-energy systems -- the science of the energy transition
In a perspective published in Joule on Aug. 14, a group of researchers led by Stanford University propose a new academic discipline, 'macro-energy systems,' as the science of the energy transition.

How much energy storage costs must fall to reach renewable energy's full potential
The cost of energy storage will be critical in determining how much renewable energy can contribute to the decarbonization of electricity.

Read More: Energy News and Energy Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.