Movement of single molecules imaged in live organism

October 29, 2001

Understanding attraction is difficult enough, but it's a little less so these days, at least in amoeba living in the lab of Johns Hopkins scientist Peter Devreotes, Ph.D.

These tiny single-celled organisms have a thing for a certain molecule, called cAMP, and move toward it with striking efficiency. Similarly, directed movement also guides human cells in their normal travels and in diseases such as arthritis, asthma, multiple sclerosis and cancer, says Devreotes. He has been using the amoeba to examine how this process, known as "chemotaxis," works.

Now, in the Oct. 26 issue of the journal Science, Japanese scientists and Devreotes describe success in imaging single molecules of cAMP as they interact with docking points, or receptors, on the surface of these amoebae. The technique provides real-time video of how the receptors and cAMP behave. [To view or download video, see http://www.hopkinsmedicine.org/cellbio/devreotes/Joanna%20Downer.htm].

Copies of the receptor are distributed throughout the amoeba's outer membrane, allowing the cell to detect cAMP all around it and even to distinguish which direction has the highest amounts. Detecting this "gradient" of cAMP, the cell moves constantly toward higher concentrations of the attractant, says Devreotes, professor and director of cell biology at the Johns Hopkins School of Medicine's Institute for Basic Biomedical Sciences.

"It's sort of like looking for the ice cream stand at the county fair," explains Devreotes. "You may see a few people with ice cream cones, then look around and head off in the direction more of them seem to be coming from."

By tagging single molecules of cAMP with a fluorescent dye, the scientists have obtained images of glowing red spots on living amoebae. Over a period of a few seconds, the spots, which represent single molecules of cAMP bound to its receptor, move within the cell membrane before dropping off at random. Among other things, the images prove that receptors move, or diffuse, within cell membranes, says Devreotes.

"We can see single molecules binding to receptors and actually watch the receptors move," says Devreotes. "People know that receptors bind and release molecules, but until now no one has seen the process one event at a time."

The images also prove that cAMP binds to receptors throughout the cell membrane. "It could have been that receptors shifted to the side with the higher concentration of cAMP," says Devreotes. "A uniform distribution, however, lets the cell respond faster to changes in the cAMP gradient."

Instead of being more numerous, the receptors on the "front" of the cell had faster and more frequent interactions with cAMP, the images showed. The images also showed that not all the receptors were constantly or randomly diffusing. The scientists suspect that apparently stationary receptors or those moving in a straight line might be interacting with the internal skeleton of the cell.
-end-
Authors on the study, in addition to Devreotes, are lead author Masahiro Ueda, Yasushi Sako, and Toshio Yanagida of physiology and biosignaling at the Graduate School of Medicine, Osaka University, and Toshiki Tanaka, formerly of the Biomolecular Engineering Research Institute in Osaka and now in the department of applied chemistry at Nagoya Institute of Technology.

On the Web: http://www.sciencemag.org

Real-time video of cAMP binding to its receptor on the surface of amoeba: http://www.hopkinsmedicine.org/cellbio/devreotes/Joanna%20Downer.htm

Johns Hopkins Medical Institutions' news releases are available on an EMBARGOED basis on EurekAlert at http://www.eurekalert.org, Newswise at http://www.newswise.com and from the Office of Communications and Public Affairs' direct e-mail news release service. To enroll, call 410-955-4288 or send e-mail to bsimpkins@jhmi.edu.

On a POST-EMBARGOED basis find them at http://www.hopkinsmedicine.org and Quadnet at http://www.quad-net.com

Johns Hopkins Medicine

Related Cell Membrane Articles from Brightsurf:

Lighting the way to selective membrane imaging
A team of scientists at Kanazawa University have shown how water-soluble tetraphenylethene molecules can become fluorescent when aggregating at a biomembrane-mimetic liquid-liquid interface.

What membrane can do in dealing with radiation
USTC recently found that polymethylmethacrylate (PMMA) and polyvinyl chloride (PVC) can release acidic substance under γ radiation, whose amount is proportional to the radiation intensity.

Bioelectronic device achieves unprecedented control of cell membrane voltage
Every living cell maintains a voltage across the cell membrane that results from differences in the concentrations of charged ions inside and outside the cell.

Novel cell membrane model could be key to uncovering new protein properties
Researchers have recently shed light on how cell membrane proteins could be influenced by the lipids around them.

Using light's properties to indirectly see inside a cell membrane
Using properties of light from fluorescent probes is at the heart of a new imaging technique developed at Washington University's McKelvey School of Engineering that allows for an unprecedented look inside cell membranes.

Cell 'membrane on a chip' could speed up screening of drug candidates for COVID-19
Researchers have developed a human cell 'membrane on a chip' that allows continuous monitoring of how drugs and infectious agents interact with our cells, and may soon be used to test potential drug candidates for COVID-19.

Scientists synthesize novel artificial molecules that mimic a cell membrane protein
Scientists at Tokyo Institute of Technology (Tokyo Tech) recently developed an artificial transmembrane ligand-gated channel that can mimic the biological structure and function of its natural counterpart.

Across the cell membrane
Aquaporins and glucose transporters facilitate the movement of substances across biological membranes and are present in all kingdoms of life.

Location, location, location: The cell membrane facilitates RAS protein interactions
Many cancer medications fail to effectively target the most commonly mutated cancer genes in humans, called RAS.

New self-forming membrane to protect our environment
A new class of self-forming membrane has been developed by researchers from Newcastle University, UK.

Read More: Cell Membrane News and Cell Membrane Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.