MIT instrument monitors molten materials

October 29, 2001

CAMBRIDGE, Mass.--The MIT inventor of an instrument that will aid efforts to store radioactive wastes in stable glass has been honored with a 2001 R&D 100 Award, his fifth in seven years. The instrument could also have applications in other industries involved in processing molten materials.

Paul Woskov, principal research engineer at MIT's Plasma Science and Fusion Center, won the award for the MilliWave Viscometer. The device is among "the 100 most technologically significant new products" as determined by R&D Magazine and a panel of experts. Woskov attended a black-tie awards ceremony October 4 in Chicago.

The new instrument measures a key parameter for processing molten materials: viscosity. "Viscosity is a measure of how well a liquid flows within stationary boundaries, like a pipe, in response to a given force," Woskov said. "It can indicate the chemistry and quality of a glass or metal product."

The MilliWave Viscometer is special because it works at the temperatures of molten glass and metals. "Its maximum temperature of operation is more than 1,000oC higher than viscometers currently on the market." Another type of viscometer that is patented but not commercially available can also operate at these temperatures, Woskov notes, but for a variety of reasons he says his invention "would be much more robust and reliable in a manufacturing environment, and also less costly."

Woskov developed the new viscometer to aid the clean-up of radioactive waste sites left over from the cold war. At over $40 billion this effort has been billed as the largest civil works project in US history. And those costs, said Woskov, "are closely associated with the processing necessary to put the high-level wastes in a stable glass form and then storing this glass for many millennia."

The MilliWave Viscometer will make possible feedback control of the process in which wastes are added to molten glass. Such feedback should "maximize waste loading in the glass, thus improving the efficiency of the glass process and reducing the resulting waste volumes," Woskov said.

The instrument, he concluded, "will have a very significant economic impact on a costly environmental clean-up effort and in the manufacture and development of many material products."
-end-
Woskov's colleagues in the development of the viscometer are John Machuzak and Paul Thomas of the PSFC, S.K. Sundaram of Battelle Pacific Northwest National Laboratory, and Gene Daniel of Westinghouse Savannah River Company.

Work on the viscometer was funded by the Environmental Management Sciences Program of the U.S. Department of Energy.

Massachusetts Institute of Technology

Related Glass Articles from Brightsurf:

Glass tables can cause life-threatening injuries
Faulty glass in tables can cause life-threatening injuries, according to a Rutgers study, which provides evidence that stricter federal regulations are needed to protect consumers.

The nature of glass-forming liquids is more clear
Researchers from The University of Tokyo have found that attractive and repulsive interactions between particles are both essential to form structural order that controls the dynamics of glass-forming liquids.

Experimental study of how 'metallic glass' forms challenges paradigm in glass research
Unlike in a crystal, the atoms in a metallic glass are not ordered when the liquid solidifies.

On-demand glass is right around the corner
A research group coordinated by physicists of the University of Trento was able to probe internal stress in colloidal glasses, a crucial step to control the mechanical properties of glasses.

Glass from a 3D printer
ETH researchers used a 3D printing process to produce complex and highly porous glass objects.

Making glass more clear
Northwestern University researchers have developed an algorithm that makes it possible to design glassy materials with dynamic properties and predict their continually changing behaviors.

Researchers use 3D printer to print glass
For the first time, researchers have successfully 3D printed chalcogenide glass, a unique material used to make optical components that operate at mid-infrared wavelengths.

New family of glass good for lenses
A new composition of germanosilicate glass created by adding zinc oxide has properties good for lens applications, according to Penn State researchers.

In-depth insights into glass corrosion
Silicate glass has many applications, including the use as a nuclear waste form to immobilize radioactive elements from spent fuel.

New research questions the 'Glass Cliff' and corroborates the persistent 'Glass Ceiling'
Are women more likely to be appointed to leadership positions in crisis situations when companies are struggling with declining profits?

Read More: Glass News and Glass Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.