Eating red meat sets up target for disease-causing bacteria

October 29, 2008

Offering another reason why eating red meat could be bad for you, an international research team, including University of California, San Diego School of Medicine professor Ajit Varki, M.D., has uncovered the first example of a bacterium that causes food poisoning in humans when it targets a non-human molecule absorbed into the body through red meats such as lamb, pork and beef.

In findings to be published on line October 29th in advance of print in the journal Nature, the scientists discovered that a potent bacterial toxin called subtilase cytotoxin specifically targets human cells that have a non-human, cellular molecule on their surface. The molecule -N-glycolylneuraminic acid (Neu5Gc) - is a type of glycan, or sugar molecule, that humans don't naturally produce.

Subtilase cytotoxin is produced by certain kinds of E. coli bacteria, causing bloody diarrhea and a potentially fatal disease called haemolytic uraemic syndrome (HUS) in humans. Humans usually become infected after eating contaminated red meat, which is why this is also known as "hamburger" disease.

Varki, UC San Diego School of Medicine distinguished professor of medicine and cellular and molecular medicine, and co-director of the UCSD Glycobiology Research and Training Center, previously discovered that humans don't produce Neu5Gc because they lack the gene responsible for its production. Therefore, it was thought that humans should be resistant to the toxin.

"Ironically, humans may set themselves up for an increased risk of illness from this kind of E. coli bacteria present in contaminated red meat or dairy, because these very same products have high-levels of Neu5Gc," Varki explained. "The Neu5Gc molecule is absorbed into the body, making it a target for the toxin produced by E. coli."

In the Nature study, the researchers discovered that sites where the Neu5Gc has been incorporated into the human body coincide with toxin binding. "When the toxin binds to the non-human Neu5Gc receptors, it can result in serious food-poisoning and other symptoms in humans," said Varki. The research emphasizes the need for people to eat only well-cook meat or pasteurized dairy products, processes that destroy contaminating bacteria.

Five years ago, Varki and his colleagues at the UC San Diego School of Medicine published a paper in the Proceedings of the National Academy of Sciences describing how Neu5Gc is absorbed into human tissues - including the surface of cells lining the intestines and blood vessels - as a result of eating red meat and milk products. At the time, the researchers also showed that this foreign molecule generates an immune response that could potentially lead to inflammation in human tissues. The UC San Diego study was the first to investigate human dietary absorption of the Neu5Gc glycans which, while not produced in humans, does occur naturally in red meats. Levels are very low or undetectable in fruits, vegetables, eggs, poultry and fish. The researchers proved that people who ingest Neu5Gc incorporate some of it into their tissues, and demonstrated that many generated an immune response against the molecule, conjecturing that a lifetime of gradual incorporation of this glycan "invader" could result in disease.
-end-
The UC San Diego team included postdoctoral fellow Jonas C. Löfling and professor of pathology Nissi M. Varki. The international research collaborators included Jamie Rossjohn and Dr. Travis Beddoe, as well as Emma Byres and Matthew C.C. Wilce from Monash University in Victoria, Australia; Adrienne W. Paton, James C. Paton, Ursula M. Talbot and Damien C. Chong of the University of Adelaide, South Australia; David F. Smith, Emory University School of Medicine, Atlanta, Georgia; and Hai Yu, Shengshu Huang and Xi Chen, UC Davis Department of Chemistry.

The research was funded by the National Institutes of Health, and by Australia's National Health and Medical Research Council.

University of California - San Diego

Related Immune Response Articles from Brightsurf:

Boosting chickens' own immune response could curb disease
Broiler chicken producers the world over are all too familiar with coccidiosis, a parasite-borne intestinal disease that stalls growth and winnows flocks.

Cells sacrifice themselves to boost immune response to viruses
Whether flu or coronavirus, it can take several days for the body to ramp up an effective response to a viral infection.

Children's immune response more effective against COVID-19
Children and adults exhibit distinct immune system responses to infection by the virus that causes COVID-19, a finding that helps explain why COVID-19 outcomes tend to be much worse in adults, researchers from Yale and Albert Einstein College of Medicine report Sept.

Which immune response could cause a vaccine against COVID-19?
Immune reactions caused by vaccination can help protect the organism, or sometimes may aggravate the condition.

Obesity may alter immune system response to COVID-19
Obesity may cause a hyperactive immune system response to COVID-19 infection that makes it difficult to fight off the virus, according to a new manuscript published in the Endocrine Society's journal, Endocrinology.

Immune response to Sars-Cov-2 following organ transplantation
Even patients with suppressed immune systems can achieve a strong immune response to Sars-Cov-2.

'Relaxed' T cells critical to immune response
Rice University researchers model the role of relaxation time as T cells bind to invaders or imposters, and how their ability to differentiate between the two triggers the body's immune system.

A novel mechanism that triggers a cellular immune response
Researchers at Baylor College of Medicine present comprehensive evidence that supports a novel trigger for a cell-mediated response and propose a mechanism for its action.

Platelets exacerbate immune response
Platelets not only play a key role in blood clotting, but can also significantly intensify inflammatory processes.

How to boost immune response to vaccines in older people
Identifying interventions that improve vaccine efficacy in older persons is vital to deliver healthy ageing for an ageing population.

Read More: Immune Response News and Immune Response Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.