Biomarkers of behavior, therapeutic targets for adult B-acute lymphoblastic leukemia identified

October 29, 2012

PHILADELPHIA -- New insight into the aggressive behavior of certain adult B-acute lymphoblastic leukemias has provided researchers with a potential new prognostic biomarker and a promising new therapeutic target.

The research, conducted by Ari Melnick, M.D., associate professor of medicine and director of the Raymond and Beverly Sackler Center for Biomedical and Physical Sciences at Weill Cornell Medical College and a hematologist-oncologist at New York-Presbyterian Hospital/Weill Cornell Medical Center, and colleagues, was published in Cancer Discovery, a journal of the American Association for Cancer Research.

Although B-acute lymphoblastic leukemia is highly curable in children, the disease is usually fatal in adults, and researchers have yet to identify why this is the case. Part of the explanation for the poorer outcomes in adults is the higher frequency of genetic alterations associated with unfavorable prognosis.

In order to better understand why these genetic alterations are associated with poor outcomes, Melnick and colleagues studied 215 diagnostic specimens obtained from adults with B-acute lymphoblastic leukemia who were participating in a large Eastern Cooperative Oncology Group phase III clinical trial.

"We performed an integrative epigenomics study to decode the instructions that determine how these cells behave," Melnick said. "The hope was that this would allow us to identify better survival biomarkers and new therapeutic targets."

In many cancers, genetic alterations work in conjunction with epigenetic changes (changes in the way that DNA is modified and packaged) to promote cancerous behaviors. Looking at the B-acute lymphoblastic leukemia specimens, Melnick and colleagues found that many of the leukemias' bad traits were a result of changes in the epigenetic code. In many cases, the epigenetic changes were directly linked to the proteins generated from the genetic alterations and could be used to identify key master regulators required for the leukemic cells to live, according to Melnick.

"For example, we found that a cell surface molecule called CD25 was an extremely powerful indicator of the presence of the most aggressive and fatal cases," Melnick said.

The researchers also discovered that abnormal forms of the E2A and MLL proteins occurring in B-acute lymphoblastic leukemias directly reprogram epigenetic settings at their binding sites throughout the genome.

Most notably, the researchers found that mutant forms of MLL epigenetically reprogramed leukemia cells to express the powerful oncoprotein BCL6, and that BCL6 was required to maintain the proliferation and survival of the leukemia cells.

"We then designed inhibitors of BCL6 and showed that we could kill leukemia cells from patients enrolled in the clinical trial by blocking its function," Melnick said.

Based on these results, the researchers plan to use CD25 as a biomarker to identify those patients who have the worst disease in the next set of clinical trials, and to tailor treatment appropriately. In addition, BCL6 inhibitors are currently being translated for use in humans, and they hope to develop clinical trials targeting BCL6 in MLL-rearranged leukemias.

"These results will ultimately lead to biomarkers that help guide treatment and to the development of therapies that will be more effective for patients with this aggressive form of leukemia," Melnick said.
-end-
Follow the AACR on Twitter: @aacr #aacr

Follow the AACR on Facebook: http://www.facebook.com/aacr.org

About the American Association for Cancer Research

Founded in 1907, the American Association for Cancer Research (AACR) is the world's first and largest professional organization dedicated to advancing cancer research and its mission to prevent and cure cancer. AACR membership includes more than 34,000 laboratory, translational and clinical researchers; population scientists; other health care professionals; and cancer advocates residing in more than 90 countries. The AACR marshals the full spectrum of expertise of the cancer community to accelerate progress in the prevention, biology, diagnosis and treatment of cancer by annually convening more than 20 conferences and educational workshops, the largest of which is the AACR Annual Meeting with more than 17,000 attendees. In addition, the AACR publishes seven peer-reviewed scientific journals and a magazine for cancer survivors, patients and their caregivers. The AACR funds meritorious research directly as well as in cooperation with numerous cancer organizations. As the scientific partner of Stand Up To Cancer, the AACR provides expert peer review, grants administration and scientific oversight of team science and individual grants in cancer research that have the potential for near-term patient benefit. The AACR actively communicates with legislators and policymakers about the value of cancer research and related biomedical science in saving lives from cancer.

For more information about the AACR, visit www.AACR.org.

American Association for Cancer Research

Related Leukemia Articles from Brightsurf:

New therapeutic approach against leukemia
Using an RNA molecule complex, researchers can prevent retention of cancer stem cell in their tumor supporting niche

Nanoparticle for overcoming leukemia treatment resistance
One of the largest problems with cancer treatment is the development of resistance to anticancer therapies.

Key gene in leukemia discovered
Acute myeloid leukemia (AML) is one of the most common forms of blood cancer among adults and is associated with a low survival rate, and leads to the inhibition of normal blood formation.

Vitamin B6, leukemia's deadly addiction
Researchers from CSHL and Memorial Sloan Kettering Cancer Center have discovered how Acute Myeloid Leukemia is addicted to vitamin B6.

Artificial intelligence tracks down leukemia
Artificial intelligence can detect one of the most common forms of blood cancer - acute myeloid leukemia -- with high reliability.

Milestone reached in new leukemia drug
Using a chemical compound called YKL-05-099, a team of cancer researchers from CSHL and the Dana Farber Institute was able to target the Salt-Inducible Kinase 3 (SIK3) pathway and extend survival in mice with MLL leukemia.

The drug combination effective against bovine leukemia
Scientists have succeeded in reducing levels of the bovine leukemia virus (BLV) in cows with severe infections by combining an immune checkpoint inhibitor and an enzyme inhibitor.

Towards a safer treatment for leukemia
An international team of researchers at VIB-KU Leuven, Belgium, the UK Dementia Institute and the Children's Cancer Institute, Australia, have found a safer treatment for a specific type of leukemia.

Research paves way for new source for leukemia drug
Chemistry researchers have patented a method for making anti-leukemia compounds that until now have only been available via an Asian tree that produces them.

An atlas of an aggressive leukemia
A team of researchers led by Bradley Bernstein at the Ludwig Center at Harvard has used single-cell technologies and machine learning to create a detailed 'atlas of cell states' for acute myeloid leukemia (AML) that could help improve treatment of the aggressive cancer.

Read More: Leukemia News and Leukemia Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.