New study sheds light on how and when vision evolved

October 29, 2012

The study, which used computer modelling to provide a detailed picture of how and when opsins evolved, sheds light on the origin of sight in animals, including humans.

The evolutionary origins of vision remain hotly debated, partly due to inconsistent reports of phylogenetic relationships among the earliest opsin-possessing animals.

Dr Davide Pisani of Bristol's School of Earth Sciences and colleagues at NUI Maynooth performed a computational analysis to test every hypothesis of opsin evolution proposed to date.

The analysis incorporated all available genomic information from all relevant animal lineages, including a newly sequenced group of sponges (Oscarella carmela) and the Cnidarians, a group of animals thought to have possessed the world's earliest eyes.

Using this information, the researchers developed a timeline with an opsin ancestor common to all groups appearing some 700 million years ago. This opsin was considered 'blind' yet underwent key genetic changes over the span of 11 million years that conveyed the ability to detect light.

Dr Pisani said: "The great relevance of our study is that we traced the earliest origin of vision and we found that it originated only once in animals. This is an astonishing discovery because it implies that our study uncovered, in consequence, how and when vision evolved in humans."
-end-
Paper

'Metazoan opsin evolution reveals a simple route to animal vision' by Roberto Fueda, Sinead C. Hamilton, James O. McInerney, and Davide Pisani in PNAS.

University of Bristol

Related Vision Articles from Brightsurf:

School-based vision screening programs found 1 in 10 kids had vision problems
A school-based vision screening program in kindergarten, shown to be effective at identifying untreated vision problems in 1 in 10 students, could be useful to implement widely in diverse communities, according to new research in CMAJ (Canadian Medical Association Journal) http://www.cmaj.ca/lookup/doi/10.1503/cmaj.191085.

Restoring vision by gene therapy
Latest scientific findings give hope for people with incurable retinal degeneration.

Vision loss influences perception of sound
People with severe vision loss can less accurately judge the distance of nearby sounds, potentially putting them more at risk of injury.

'Time is vision' after a stroke
University of Rochester researchers studied stroke patients who experienced vision loss and found that the patients retained some visual abilities immediately after the stroke but these abilities diminished gradually and eventually disappeared permanently after approximately six months.

Improving the vision of self-driving vehicles
There may be a better way for autonomous vehicles to learn how to drive themselves: by watching humans.

A new model of vision
MIT researchers have developed a computer model of face processing that could reveal how the brain produces richly detailed visual representations so quickly.

Vision may be the real cause of children's problems
Do you have poor motor skills or struggle to read, write or solve math problems?

Shark and ray vision comes into focus
Until now, little has been known about the evolution of vision in cartilaginous fishes, particularly sharks and their genetic cousins, the rays.

The birth of vision, from the retina to the brain
How do neurons differentiate to become individual components of the visual system?

Tracing the evolution of vision
The function of the visual photopigment rhodopsin and its action in the retina to facilitate vision is well understood.

Read More: Vision News and Vision Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.