EU sponsors fabrication of molecular electronic components on the sub-nanometer scale

October 29, 2013

Professor Angelika Kühnle and her work group at the Institute of Physical Chemistry at Johannes Gutenberg University Mainz (JGU) are participating in a new EU project focusing on information and communication technology. Over the next four years, a total of eight partners from six European countries will be involved in the "Planar Atomic and Molecular Scale Devices" (PAMS) project. The goal is to manufacture planar electronic components to enable technological and scientific research to be conducted at the atomic or sub-molecular level. Kühnle's work group will receive some EUR 700,000 in funding under the 7th EU Research Framework Program.

The purpose of the PAMS project is to design electronic components that will be at a scale below the sub-nanometer range, in other words, in the atomic range. In order to do so, existing tools need to be further developed so that the necessary building blocks, such as nano wires and nano pads, can be connected and manipulated at low temperatures. Among the core aims of the research project is to understand the electronic functioning of these nano wires and the contacts between the various components for further improvement.

The Mainz-based team will focus on the synthesis of tailored molecular components. "We will be producing molecular structures on surfaces that, for example, will be used as molecular wires. The essential requirement is that these structures need to be directly synthesized on a non-conducting or semi-conducting carrier layer," explained Kühnle. "For this purpose, our cooperation partners will synthesize tailored precursor molecules with clearly defined properties." The precursor molecules will then be attached to isolating or semi-conducting surfaces under controlled conditions in an ultra-high vacuum environment. The next step will be to activate the precursor molecules on the surfaces by means of exposure to high temperatures or light irradiation. This should trigger a reaction that links the molecules, resulting in a stable, interlinked molecular component on the surface of the material.

Also participating in the EU project "Planar Atomic and Molecular Scale Devices" under supervision of Professor André Gourdon of the Centre National de la Recherche Scientifique (CNRS) in Toulouse, France, will be, in addition to Johannes Gutenberg University Mainz, the Jagiellonian University in Kraków, Poland, Dresden University of Technology, Germany, the University of Santiago de Compostela, Spain, the Spanish National Research Council in Madrid, Aalto University in Finland, and the IBM Research GmbH in Rüschlikon, Switzerland.
Further information:

Professor Dr. Angelika Kühnle
Institute of Physical Chemistry
Johannes Gutenberg University Mainz
D 55099 Mainz, GERMANY
phone +49 6131 39-23930
fax +49 6131 39-53930

Johannes Gutenberg Universitaet Mainz

Related Molecules Articles from Brightsurf:

Finally, a way to see molecules 'wobble'
Researchers at the University of Rochester and the Fresnel Institute in France have found a way to visualize those molecules in even greater detail, showing their position and orientation in 3D, and even how they wobble and oscillate.

Water molecules are gold for nanocatalysis
Nanocatalysts made of gold nanoparticles dispersed on metal oxides are very promising for the industrial, selective oxidation of compounds, including alcohols, into valuable chemicals.

Water molecules dance in three
An international team of scientists has been able to shed new light on the properties of water at the molecular level.

How molecules self-assemble into superstructures
Most technical functional units are built bit by bit according to a well-designed construction plan.

Breaking down stubborn molecules
Seawater is more than just saltwater. The ocean is a veritable soup of chemicals.

Shaping the rings of molecules
Canadian chemists discover a natural process to control the shape of 'macrocycles,' molecules of large rings of atoms, for use in pharmaceuticals and electronics.

The mysterious movement of water molecules
Water is all around us and essential for life. Nevertheless, research into its behaviour at the atomic level -- above all how it interacts with surfaces -- is thin on the ground.

Spectroscopy: A fine sense for molecules
Scientists at the Laboratory for Attosecond Physics have developed a unique laser technology for the analysis of the molecular composition of biological samples.

Looking at the good vibes of molecules
Label-free dynamic detection of biomolecules is a major challenge in live-cell microscopy.

Colliding molecules and antiparticles
A study by Marcos Barp and Felipe Arretche from Brazil published in EPJ D shows a model of the interaction between positrons and simple molecules that is in good agreement with experimental results.

Read More: Molecules News and Molecules Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to