Planck 2013 results

October 29, 2014

Astronomy & Astrophysics is publishing a special feature of 31 articles describing the data gathered by Planck over 15 months of observations and released by ESA and the Planck Collaboration in March 2013. This series of papers presents the initial scientific results extracted from this first Planck dataset.

The Planck satellite was launched in May 2009. With the highest accuracy to date, it measures the remnants of the radiation that filled the Universe immediately after the Big Bang. It is the oldest light in the Universe, emitted when it was 380000 years old. This light is observed today as the cosmic microwave background (CMB). Its maximum intensity is at about 150 GHz (2 mm), and its temperature about 3K. The study of the CMB is currently a very active field of research in cosmology because it provides strong constraints on the cosmological models. In particular, observations of the CMB confirms the key prediction of the Big Bang model and, more precisely, of what cosmologists call the concordance model of cosmology.

Planck was designed to measure the emission from the entire sky at nine distinct wavelengths, ranging from the radio (1 cm) to the far-infrared (300 microns). Several distinct sources of emission ─ both of Galactic and extragalactic origin ─ contribute to the features observed in each of the nine images shown here. Radio emissions from the Milky Way are most prominent at the longest wavelengths, and thermal dust emission at the shortest. Other galaxies contribute to the mix, mostly as unresolved sources. In the middle of Planck's wavelength range, the CMB dominates the sky at intermediate and high Galactic latitudes. The spectral and spatial signatures of all these sources are used to extract an all-sky image of the tiny temperature anisotropies of the CMB with unprecedented accuracy. The properties of these fluctuations are used to derive the parameters characterizing our Universe at early times.

Papers II to X in the series describe the huge dataset obtained from the Planck satellite and released in March 2013. Using this dataset, the Planck team established the new "cosmic recipe", i.e., the relative proportions of the Universe's constituent ingredients. Normal matter that makes up stars and galaxies contributes just 4.9% of the energy of the Universe. Dark matter, to date detected only indirectly by its gravitational influence on galaxies and galaxy clusters, is found to make up 26.8%, more than previous estimates. Conversely, dark energy, a mysterious force said to be responsible for accelerating the expansion of the Universe, accounts for 68.3%, less than previously thought. The Planck team also published a new value for the age of the Universe: 13.8 billion years (see Paper XVI).

The Planck team also studied the statistical properties of the CMB in great detail. Papers XXIII, XXIV, and XXVI explore the statistical distribution of its temperature anisotropies. There is no evidence of any deviations from isotropy on small angular scales. While the observations on small and intermediate angular scales agree extremely well with the model predictions, Planck has now provided the first indisputable evidence that the distribution of primordial fluctuations was not the same on all scales and that it comprises more structure than expected at larger scales. One anomalous signal appears as a substantial asymmetry in the CMB signal observed in the two opposite hemispheres of the sky, which is that one of the two hemispheres appears to have a significantly stronger signal on average. Among the other major results, Paper XXIII of the series explores how the Planck data can constrain theories of cosmic inflation; this paper currently puts the tightest constraints on inflation.

The CMB is not only a picture of the Universe taken 13.8 billion years ago, but it was also distorted during its journey because the CMB photons interacted with the large-scale structures that they traveled through (such as galaxy and galaxy clusters). In Paper XVII of the series, the team extracts from the Planck data a map of the gravitational lensing effect visible today in the CMB and covering the whole sky. The map published in this paper provides a new way to probe the evolution of structures in the Universe over its lifetime.

A byproduct of the Planck all-sky maps are catalogs of compact sources. Paper XXIX describes the production of the largest catalog of galaxy clusters based on the Sunyaev-Zeldovich effect, a distortion of the CMB spectrum caused by very energetic electrons in a galaxy cluster, which kick CMB photons to higher energies. This catalog was used to estimate cosmological constraints, as described in Paper XX.

With the 2013 release of the intensity signal measured during the 15 first months of observation, Planck data are providing new major advances in different domains of cosmology and astrophysics. In the very near future, the Planck Collaboration will release a new dataset that includes all of its observations in intensity and in polarization. This new dataset will be a lasting legacy for the community for many years to come.
-end-
A&A special feature: Planck 2013 results
Astronomy & Astrophysics, volume 571, November 2014

Astronomy & Astrophysics

Related Big Bang Articles from Brightsurf:

Do big tadpoles turn into big frogs? It's complicated, study finds
University of Arizona researchers studied the evolution of the body sizes of frogs and their tadpoles.

A 'bang' in LIGO and Virgo detectors signals most massive gravitational-wave source yet
Researchers have detected a signal from what may be the most massive black hole merger yet observed in gravitational waves.

Analysis: Health sector, big pharma spent big on lobbying for COVID-19 funding
To date, Congress has authorized roughly $3 trillion in COVID-19 relief assistance -- the largest relief package in history.

Unequal neutron-star mergers create unique "bang" in simulations
In a series of simulations, an international team of researchers determined that some neutron star collisions not only produce gravitational waves, but also electromagnetic radiation that should be detectable on Earth.

Supermassive black holes shortly after the Big Bang: How to seed them
They are billions of times larger than our Sun: how is it possible that supermassive black holes were already present when the Universe was 'just' 800 million years old?

Big data could yield big discoveries in archaeology, Brown scholar says
Parker VanValkenburgh, an assistant professor of anthropology, curated a journal issue that explores the opportunities and challenges big data could bring to the field of archaeology.

APS tip sheet: modeling the matter after big bang expansion
Matter's fragmentation after the big bang.

Giving cryptocurrency users more bang for their buck
A new cryptocurrency-routing scheme co-invented by MIT researchers can boost the efficiency -- and, ultimately, profits -- of certain networks designed to speed up notoriously slow blockchain transactions.

The core of massive dying galaxies already formed 1.5 billion years after the Big Bang
The most distant dying galaxy discovered so far, more massive than our Milky Way -- with more than a trillion stars -- has revealed that the 'cores' of these systems had formed already 1.5 billion years after the Big Bang, about 1 billion years earlier than previous measurements revealed.

The 'cores' of massive galaxies had already formed 1.5 billion years after the big bang
A distant galaxy more massive than our Milky Way -- with more than a trillion stars - has revealed that the 'cores' of massive galaxies in the Universe had formed already 1.5 billion years after the Big Bang, about 1 billion years earlier than previous measurements revealed.

Read More: Big Bang News and Big Bang Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.