Nav: Home

Obese mice lose a third of their fat using a natural protein

October 29, 2018

WASHINGTON -- To the great surprise of cancer researchers, a protein they investigated for its possible role in cancer turned out to be a powerful regulator of metabolism. The Georgetown University-led study found that forced expression of this protein in a laboratory strain of obese mice showed a remarkable reduction of their fat mass despite a genetic predisposition to eat all the time.

The study, published in Scientific Reports, suggests that the protein FGFBP3 (BP3 for short) might offer novel therapy to reverse disorders associated with metabolic syndrome, such as type 2 diabetes and fatty liver disease.

Because BP3 is a natural protein and not an artificial drug, clinical trials of recombinant human BP3 could begin after a final round of preclinical studies, investigators say.

"We found that eight BP3 treatments over 18 days was enough to reduce the fat in obese mice by over a third," says the study's senior investigator, Anton Wellstein, MD, PhD, a professor of oncology and pharmacology at Georgetown Lombardi Comprehensive Cancer Center.

The treatments also reduced a number of obesity-related disorders in the mice, such as hyperglycemia -- excess blood sugar that is often linked to diabetes -- and eliminated the fat in their once fatty livers. Clinical as well as microscopic examination of the mice showed no side effects, researchers say.

Obesity, which affects more than 650 million people worldwide, is the major driver for metabolic syndromes, which includes disorders such as insulin resistance, glucose intolerance, hypertension and elevated lipids in the blood.

BP3 belongs to the family of fibroblast growth factor (FGF) binding proteins (BP). FGFs are found in organisms ranging from worms to humans and are involved in a wide range of biological processes, such as regulating cell growth, wound healing and response to injury. Some FGFs act like hormones.

BP1, 2, and 3 are "chaperone" proteins that latch on to FGF proteins and enhance their activities in the body. Wellstein has long researched the BP1 gene because its production is elevated in a range of cancers, suggesting that growth of some cancers is linked to the excess delivery of FGFs. Only recently has Wellstein turned his attention, and that of his lab and colleagues, to BP3 to understand its role.

The researchers found that this chaperone binds to three FGF proteins (19, 21, and 23) that are involved in the control of metabolism. FGF19 and FGF 21 signaling regulates the storage and use of carbohydrates (sugars) and lipids (fats). FGF23 controls phosphate metabolism.

"We found that BP3 exerts a striking contribution to metabolic control," Wellstein says. "When you have more BP3 chaperone available, FGF19 and FGF21 effect is increased through the increase of their signaling. That makes BP3 a strong driver of carbohydrate and lipid metabolism. It's like having a lot more taxis available in New York City to pick up all the people who need a ride."

"With metabolism revved up, sugar in the blood, and fat processed in the liver are used for energy and is not stored," Wellstein says. "And warehouses of fat are tapped as well. For example, the job of FGF21 is to control break down of fat, whether it is stored or just eaten."

While the study results are exciting, additional research is required before BP3 protein can be investigated as a human therapy for metabolic syndromes, he says.
-end-
Contributing investigators include Elena Tassi, PhD, and Khalid A. Garman, MD, PhD, from Georgetown Lombardi, both co-lead authors; Marcel O. Schmidt, PhD, Xiating Ma, medical student Khaled W. Kabbara, Aykut Uren, MD, York Tomita, PhD, and Anna T. Riegel, PhD, from Georgetown Lombardi; Christopher S. Wilcox, MD, PhD, from Georgetown University School of Medicine; Mattias Carlstrom, PharmD, PhD, from the Karolinska Institute in Stockholm and Regina Goetz, PhD, and Moosa Mohammadi, PhD, from New York University School of Medicine.

Wellstein is named as an inventor on a patent application that has been filed by Georgetown University related to the technology described in this manuscript.

This research was supported by Georgetown University institutional funds, NIH grants (P01 HL068686, R01 CA71508, and P30 CA51008) and by the Swedish Research Council (2016-01381).

About Georgetown Lombardi Comprehensive Cancer Center

Georgetown Lombardi Comprehensive Cancer Center is designated by the National Cancer Institute as a comprehensive cancer center -- the only cancer center of its kind in the Washington, D.C. area. A part of Georgetown University Medical Center and MedStar Georgetown University Hospital, Georgetown Lombardi seeks to improve the diagnosis, treatment, and prevention of cancer through innovative basic and clinical research, patient care, community education and outreach, and the training of cancer specialists of the future. Connect with Georgetown Lombardi on Facebook Facebook.com/GeorgetownLombardi and Twitter (@LombardiCancer).

About Georgetown University Medical Center

Georgetown University Medical Center (GUMC) is an internationally recognized academic medical center with a three-part mission of research, teaching and patient care (through MedStar Health). GUMC's mission is carried out with a strong emphasis on public service and a dedication to the Catholic, Jesuit principle of cura personalis -- or "care of the whole person." The Medical Center includes the School of Medicine and the School of Nursing & Health Studies, both nationally ranked; Georgetown Lombardi Comprehensive Cancer Center, designated as a comprehensive cancer center by the National Cancer Institute; and the Biomedical Graduate Research Organization, which accounts for the majority of externally funded research at GUMC including a Clinical and Translational Science Award from the National Institutes of Health. Connect with GUMC on Facebook (Facebook.com/GUMCUpdate), Twitter (@gumedcenter) and Instagram (@gumedcenter).

Georgetown University Medical Center

Related Diabetes Articles:

Maternal gestational diabetes linked to diabetes in children
Children and youth of mothers who had gestational diabetes during pregnancy are at increased risk of diabetes themselves, according to new research published in CMAJ (Canadian Medical Association Journal).
Two diabetes medications don't slow progression of type 2 diabetes in youth
In youth with impaired glucose tolerance or recent-onset type 2 diabetes, neither initial treatment with long-acting insulin followed by the drug metformin, nor metformin alone preserved the body's ability to make insulin, according to results published online June 25 in Diabetes Care.
People with diabetes visit the dentist less frequently despite link between diabetes, oral health
Adults with diabetes are less likely to visit the dentist than people with prediabetes or without diabetes, finds a new study led by researchers at NYU Rory Meyers College of Nursing and East Carolina University's Brody School of Medicine.
Diabetes, but not diabetes drug, linked to poor pregnancy outcomes
New research indicates that pregnant women with pre-gestational diabetes who take metformin are at a higher risk for adverse pregnancy outcomes -- such as major birth defects and pregnancy loss -- than the general population, but their increased risk is not due to metformin but diabetes.
New oral diabetes drug shows promise in phase 3 trial for patients with type 1 diabetes
A University of Colorado Anschutz Medical Campus study finds sotagliflozin helps control glucose and reduces the need for insulin in patients with type 1 diabetes.
Can continuous glucose monitoring improve diabetes control in patients with type 1 diabetes who inject insulin
Two studies in the Jan. 24/31 issue of JAMA find that use of a sensor implanted under the skin that continuously monitors glucose levels resulted in improved levels in patients with type 1 diabetes who inject insulin multiple times a day, compared to conventional treatment.
Complications of type 2 diabetes affect quality of life, care can lead to diabetes burnout
T2D Lifestyle, a national survey by Health Union of more than 400 individuals experiencing type 2 diabetes (T2D), reveals that patients not only struggle with commonly understood complications, but also numerous lesser known ones that people do not associate with diabetes.
A better way to predict diabetes
An international team of researchers has discovered a simple, accurate new way to predict which women with gestational diabetes will develop type 2 diabetes after delivery.
The Lancet Diabetes & Endocrinology: Older Americans with diabetes living longer without disability, US study shows
Older Americans with diabetes born in the 1940s are living longer and with less disability performing day to day tasks than those born 10 years earlier, according to new research published in The Lancet Diabetes & Endocrinology journal.
Reverse your diabetes -- and you can stay diabetes-free long-term
A new study from Newcastle University, UK, has shown that people who reverse their diabetes and then keep their weight down remain free of diabetes.
More Diabetes News and Diabetes Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.