Nav: Home

Scientists developed new contactless method of measuring blood flow in hands

October 29, 2018

The research team from Russia proposed a new contactless method for measuring blood flow in the upper limbs. The method is based on video recording of the skin surface under green light measuring the absorption of red blood cells. This helps to see how effective the circulatory system and the blood flow regulation are. The experimental results showed that the proposed method is not inferior in accuracy to the traditional one. However, it is easier to use, cheaper and fits more patients. The work was published in Biomedical Optics Express.

Measuring blood flow in the limbs is an important diagnostic indicator. By studying how effectively the heart supplies blood to the limbs, we can see if the the cardiovascular system works well and if the blood flow is regulated effectively. Today, researchers usually use contact (or tensiometric) methods of occlusive plethysmography to measure blood flow in the limbs. Such an approach is based on recording changes in the volume or diameter of a limb due to its filling with blood during venous occlusion.

A way of affecting the blood flow, occlusion happens when venous outflow is stopped by applying a slight pressure on the arm without interrupting the arteries. As a result, it is possible to determine the blood flow equal to the increase in the volume of the limb due to the blood flow from the heart. However, contact measurement systems are difficult to configure and use. In addition, such methods are expensive and require adaptation for each new patient.

To overcome the limitations of standard methods, scientists from ITMO University and Almazov National Medical Research Center developed a contactless system for measuring blood flow in the upper limbs. It is based on photoplethysmography. This technique is capable of tracking changes in the blood supply of the skin using video recording of the absorption of green light. When green light hits a red blood cell, the reflected wave changes its polarization. The camera registers only this modified signal and tracks when it gets most intense. The reason for the increase in light absorption during venous occlusion can be explained by the increase in the number of red blood cells, most likely due to the expansion of the small veins of the upper layer of the skin.

To assess the accuracy of measurements using the new system, scientists conducted a series of experiments and compared the values ??obtained by traditional and new methods. Experimental measurements were performed on healthy volunteers. The signal was recorded for several cycles of venous occlusion. The results of cold stress effect on the vessels work obtained by a new method, almost completely coincided with the results of traditional measurements.

"In this research project, we used four cameras for contactless measurements to ensure the registration of the signal from all sides of the hand. This would allow us to identify the heterogeneity of the signal, if it occurs due to the difference in how capillaries work in different parts of the skin. We developed special software, ordered and assembled the equipment necessary to synchronize and simultaneously process the data stream from the four cameras. Yet, during the study, we saw that the difference was not that great, which means that in the future measurements can be carried out with only one camera," comments Alexei Kamshilin, member of the International Scientific and Technical Center "Computational Optics, Photonics and Image Visualization" of ITMO University.

The proposed method does not directly measure the total skin and muscular blood flow. However, research has confirmed that the measurement of skin blood flow is subject to the same regulatory effects as the general blood flow in a limb. The proposed contactless method is not inferior to the traditional one in accuracy, but it is cheaper, easier to use, suitable for most patients and can be applied not only to the upper but also to the lower limbs without additional optimization. Right now, scientists are working to adapt the proposed method for the legs.

The researchers found that by registering a change in the absorption of green color by the skin during the venous occlusion, it is possible to determine the state of blood flow in its upper layers. Changing the conditions of the experiment influences the tone of blood vessels and affects the speed of the blood flow. This allows assessing the vascular resistance regulation by the nervous system and other control mechanisms. Such regulation flaws are observed in a number of diseases accompanied by damage to nerves and blood vessels.

"Our ultimate goal is the creation of a convenient medical device for assessing blood flow in both upper and lower limbs, since the registration of blood flow disorders in the legs has an important additional diagnostic potential. Thus, in diabetes, complications most often affect the skin of the lower limbs. There is even such term as "diabetic foot". The new technique will be of interest to both endocrinologists and vascular surgeons who are engaged in the treatment of varicose veins of the lower limbs, as well as the restoration of blood flow in patients with atherosclerosis of arteries. At the same time, many changes in the regulation can be established at sufficiently early stages of the disease when prevention and treatment are most effective," notes Oleg Mamontov, member of the Department of Functional Diagnostics of the Almazov Center.
-end-
Reference:

Contactless monitoring of the blood-flow changes in upper limbs
Valeriy V. Zaytsev et. al. Biomedical Optics Express, October 12, 2018
https://www.osapublishing.org/boe/abstract.cfm?uri=boe-9-11-5387

ITMO University

Related Blood Flow Articles:

Blood flow monitor could save lives
A tiny fibre-optic sensor has the potential to save lives in open heart surgery, and even during surgery on pre-term babies.
Changes in blood flow tell heart cells to regenerate
Altered blood flow resulting from heart injury switches on a communication cascade that reprograms heart cells and leads to heart regeneration in zebrafish.
Blood flow command center discovered in the brain
An international team of researchers has discovered a group of cells in the brain that may function as a 'master-controller' for the cardiovascular system, orchestrating the control of blood flow to different parts of the body.
Researchers closer to new Alzheimer's therapy with brain blood flow discovery
By discovering the culprit behind decreased blood flow in the brain of people with Alzheimer's, biomedical engineers at Cornell University have made possible promising new therapies for the disease.
In vitro grafts increase blood flow in infarcted rat hearts
Advances in stem cell research offer hope for treatments that could help patients regrow heart muscle tissue after heart attacks, a key to patients achieving more complete recoveries.
Balloon-guided catheters provide better blood flow following stroke interventions
Patients who have experienced a stroke as a result of blockages of the arteries in the brain have better outcomes with the use of balloon-guided catheter surgery as compared to having a conventional guided catheter procedure.
Scientists developed new contactless method of measuring blood flow in hands
Russian researchers proposed a new contactless method for measuring blood flow in the upper limbs.
Researchers investigate correlation between blood flow and body position
For the first time ever, an international research group detected alterations in capillary blood flow around the face caused by body position change.
Restoring blood flow may be best option to save your life and limb
Amputation for severe blockages in the lower limbs has a lower survival rate than other treatment options that restore blood flow.
Blood flow in the heart revealed in a flash
Researchers at Linköping University have for the first time been able to use information from computer tomography images to simulate the heart function of an individual patient.
More Blood Flow News and Blood Flow Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.