Nav: Home

Researchers create scalable platform for on-chip quantum emitters

October 29, 2018

Household lightbulbs give off a chaotic torrent of energy, as trillions of miniscule light particles - called photons - reflect and scatter in all directions. Quantum light sources, on the other hand, are like light guns that fire single photons one by one, each time they are triggered, enabling them to carry hack-proof digital information - technology attractive to industries such as finance and defense.

Now, researchers at Stevens Institute of Technology and Columbia University have developed a scalable method for creating large numbers of these quantum light sources on a chip with unprecedented precision that not only could pave the way for the development of unbreakable cryptographic systems but also quantum computers that can perform complex calculations in seconds that would take normal computers years to finish.

"The search for scalable quantum light sources has been going on for 20 years, and more recently has become a national priority," says Stefan Strauf, who led the work and is also director of Stevens' Nanophotonic Lab. "This is the first time anyone has achieved a level of spatial control combined with high efficiency on a chip that is scalable, all of which are needed to realize quantum technologies."

The work, to be reported in the Oct. 29 advance online issue of Nature Nanotechnology, describes a new method for creating quantum light sources on demand in any desired location on a chip, by stretching an atom-thin film of semiconducting material over nanocubes made of gold. Like taut cling-wrap, the film stretches over the corners of the nanocubes, imprinting defined locations where single-photon emitters form.

Past research has tested methods for producing quantum emitters in defined locations, but these designs were not scalable or efficient at triggering single photons frequently enough to be practically useful. Strauf and his team changed all that by becoming the first to combine spatial control and scalability with the ability to efficiently emit photons on demand.

To achieve these capabilities, Strauf's team designed a unique approach where the gold nanocube serves a dual purpose: it imprints the quantum emitter on the chip and it acts as an antenna around it. By creating the quantum emitters in between the gold nanocube and mirror, Strauf left a five-nanometer narrow gap - 20,000 times smaller than the width of a sheet of paper.

"This tiny space between the mirror and nanocube creates an optical antenna that funnels all the photons into that five-nanometer gap, thereby concentrating all the energy" says Strauf. "Essentially, it provides the necessary boost for the single photons to be emitted rapidly from the defined location and in the desired direction."

To further improve the efficiency of the quantum light sources, Strauf teamed up with Katayun Barmak and James Hone, of Columbia University, who developed a technique for growing semiconductor crystals that are nearly free of defects. Using these unique crystals, Stevens' graduate student Yue Luo built rows of quantum emitters on a chip by stretching the atom-thin material over the nanocubes. The nanoantennas are formed by attaching the mirror, on the bottom side of the nanocube.

The result: a record-high firing of 42 million single photons per second; in other words, every second trigger created a photon on demand, compared to only one in 100 triggers previously.

Though tiny, the emitters are remarkably tough. "They're astonishingly stable," Strauf says. "We can cool them and warm them and disassemble the resonator and reassemble it, and they still work." Most quantum emitters must be kept chilled to -273°C but the new technology works up to -70°C. "We're not yet at room temperature," says Strauf, "but current experiments show that it's feasible to get there."
-end-


Stevens Institute of Technology

Related Quantum Computers Articles:

Blanket of light may give better quantum computers
Researchers from DTU Physics describe in an article in Science, how--by simple means -- they have created a 'carpet' of thousands of quantum-mechanically entangled light pulses.
One step closer future to quantum computers
Physicists at Uppsala University in Sweden have identified how to distinguish between true and 'fake' Majorana states in one of the most commonly used experimental setups, by means of supercurrent measurements.
Dartmouth research advances noise cancelling for quantum computers
The characterization of complex noise in quantum computers is a critical step toward making the systems more precise.
Spreading light over quantum computers
Scientists at Linköping University have shown how a quantum computer really works and have managed to simulate quantum computer properties in a classical computer.
Newfound superconductor material could be the 'silicon of quantum computers'
Newly discovered properties in the compound uranium ditelluride show that it could prove highly resistant to one of the nemeses of quantum computer development -- the difficulty with making such a computer's memory storage switches, called qubits, function long enough to finish a computation before losing the delicate physical relationship that allows them to operate as a group.
Quantum computers to clarify the connection between the quantum and classical worlds
Los Alamos National Laboratory scientists have developed a new quantum computing algorithm that offers a clearer understanding of the quantum-to-classical transition, which could help model systems on the cusp of quantum and classical worlds, such as biological proteins, and also resolve questions about how quantum mechanics applies to large-scale objects.
The best of both worlds: how to solve real problems on modern quantum computers
Researchers at the US Department of Energy's (DOE) Argonne National Laboratory and Los Alamos National Laboratory, along with researchers at Clemson University and Fujitsu Laboratories of America, have developed hybrid algorithms to run on size-limited quantum machines and have demonstrated them for practical applications.
A new theory for trapping light particles aims to advance development of quantum computers
Researchers have developed a new protocol for ensuring the stability of data when photons are stored for extended periods of time.
Improving quantum computers
For decades, experts have predicted that quantum computers will someday perform difficult tasks, such as simulating complex chemical systems, that can't be done by conventional computers.
A new hope of quantum computers for factorizations of RSA with a thousand-fold excess
Universal quantum computers are still in its infancy that cannot achieve practical applications (code-cracking) in near term.
More Quantum Computers News and Quantum Computers Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.