Why are big storms bringing so much more rain? Warming, yes, but also winds

October 29, 2019

For three hurricane seasons in a row, storms with record-breaking rainfall have caused catastrophic flooding in the southern United States: Harvey in 2017, Florence in 2018 and Imelda in 2019.

A new analysis by Princeton researchers explains why this trend is likely to continue with global warming. Both the higher moisture content of warmer air and storms' increasing wind speeds conspire to produce wetter storms, the researchers reported in a study published on October 18 in the Nature Partner Journal Climate and Atmospheric Science.

"Potential changes in the frequency of occurrence and rainfall rates from tropical cyclones are major concerns for flood hazards in the United States, especially for urban regions along the Gulf and Atlantic coasts," said co-author James Smith, Princeton's William and Edna Macaleer Professor of Engineering and Applied Science. "This study provides an important step in understanding the rainfall rate piece of the problem; the picture is one in which changes in rainfall extremes should be carefully examined in assessing flood hazards."

The results help resolve a puzzle that's emerged from recent climate modeling studies. Models project that by the end of the century hurricane rainfall rates will increase up to twice as fast as would be expected due to increasing moisture from rising sea surface temperatures alone. The Princeton team wanted to understand what other forces might contribute to the wetter storms.

"A predicted increase exceeding simple theory gave us a little bit of discomfort, because we only trust our predictions to the extent that we can understand them, and to the extent to which they show up in observations," said co-author Gabriel Vecchi, a professor of geosciences and the Princeton Environmental Institute.

The researchers suspected that wind might play a role. Climate models also project that tropical storm winds will strengthen as temperatures rise, and observational studies have shown that storms with stronger winds tend to produce higher rainfall rates. Vecchi and his colleagues reasoned that a combination of higher sea surface temperatures and stronger storms might explain the predicted increases in rainfall rates.

To test this hypothesis, lead study author Maofeng Liu, a postdoctoral research associate in civil and environmental engineering, devised an approach to isolate the effect of increasing wind speeds: He considered the rainfall rates of projected storms in separate groups according to their wind intensity.

For each of six ocean basins where tropical cyclones form, Liu grouped storms according to their maximum sustained wind speeds: tropical storms, with winds between 39 and 73 miles per hour; and hurricanes in Saffir-Simpson categories 1 through 5, with categories 4 and 5 grouped together due to the smaller number of storms at this intensity level.

Liu used this resampling method to analyze more than 4,000 simulated storms under current and future climate conditions. The approach revealed that within each storm intensity category, increases in rainfall rates with rising temperatures aligned well with the increase per degree Celsius of warming expected according to classical thermodynamics (about 7%). Only when storms of all intensities were grouped together did rainfall rates appear to outpace what would be expected to happen as a result of temperature increases alone.

"We found that not only did a storm's holding capacity for water vapor increase because of global warming," said Liu, "but also that the storms were getting stronger and contributing to higher rainfall rates."

Vecchi noted that several studies have shown the current probability of a storm like Hurricane Harvey is twice as high because of global warming. "This study makes a statement about the future," he said. "But we're having this convergence, where our observations are starting to show the increased rainfall that our models have been predicting for quite a while, and now we also have a clear theoretical understanding as to why it should be happening."
A fourth co-author of the study was Thomas Knutson, a research meteorologist at the U.S. National Oceanic and Atmospheric Administration's Geophysical Fluid Dynamics Laboratory at Princeton's Forrestal Campus. The work was supported in part by the National Oceanic and Atmospheric Administration (U.S. Department of Commerce), the National Science Foundation, the National Aeronautics and Space Administration and Princeton University's Carbon Mitigation Initiative.

Princeton University, Engineering School

Related Global Warming Articles from Brightsurf:

The ocean has become more stratified with global warming
A new study found that the global ocean has become more layered and resistant to vertical mixing as warming from the surface creates increasing stratification.

Containing methane and its contribution to global warming
Methane is a gas that deserves more attention in the climate debate as it contributes to almost half of human-made global warming in the short-term.

Global warming and extinction risk
How can fossils predict the consequences of climate change? A German research team from Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), the Museum of Natural History Berlin and the Alfred Wegener Institute compared data from fossil and marine organisms living today to predict which groups of animals are most at risk from climate change.

Intensified global monsoon extreme rainfall signals global warming -- A study
A new study reveals significant associations between global warming and the observed intensification of extreme rainfall over the global monsoon region and its several subregions, including the southern part of South Africa, India, North America and the eastern part of the South America.

Global warming's impact on undernourishment
Global warming may increase undernutrition through the effects of heat exposure on people, according to a new study published this week in PLOS Medicine by Yuming Guo of Monash University, Australia, and colleagues.

Global warming will accelerate water cycle over global land monsoon regions
A new study provides a broader understanding on the redistribution of freshwater resources across the globe induced by future changes in the monsoon system.

Comparison of global climatologies confirms warming of the global ocean
A report describes the main features of the recently published World Ocean Experiment-Argo Global Hydrographic Climatology.

Six feet under, a new approach to global warming
A Washington State University researcher has found that one-fourth of the carbon held by soil is bound to minerals as far as six feet below the surface.

Can we limit global warming to 1.5 °C?
Efforts to combat climate change tend to focus on supply-side changes, such as shifting to renewable or cleaner energy.

Global warming: Worrying lessons from the past
56 million years ago, the Earth experienced an exceptional episode of global warming.

Read More: Global Warming News and Global Warming Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.