Changes in subcellular traffic increase invasiveness of radioresistant cancer cells

October 29, 2020

Scientists have revealed the molecular mechanism regulating the trafficking of lysosomes that increases the invasiveness of radioresistant cancer cells following radiotherapy.

Radiotherapy is an effective and commonly used treatment for cancer. However, there are varieties of cancer that become resistant to these therapies, and in some cases, these radioresistant cancers can become more invasive following treatment, worsening the prognosis for the patient.

Scientists from the Global Center for Biomedical Science and Engineering, a collaboration between Hokkaido University, Japan, and Stanford University, USA, have revealed the mechanism by which molecules called Arl8b and BORC cause increased invasiveness and metastasis in radioresistant cancer cells following radiotherapy. Their results were published in the journal Communications Biology.

Previous work has shown that trafficking of vesicles inside cells plays an important role in cancer cell invasiveness. A type of vesicle called the lysosome is particularly significant. Lysosomes are renowned as the vesicles responsible for degradation of molecules, but they are also involved in secretion of molecules that work for cell adhesion, tumor invasion and metastasis. In the current work the scientists investigated the molecular basis for these roles in radioresistant breast cancer.

They first confirmed that the trafficking of lysosomes was upregulated in the cancer cells following radiotherapy, enhancing the secretion of enzymes that degrade the connective material surrounding them, and therefore increasing invasiveness of the cancer cells. They further investigated the molecular mechanisms behind this activity and determined that a regulatory molecule, Arl8b, is primarily responsible for this process.

The active form of Arl8b is normally responsible for the trafficking of lysosomes within a cell. The scientists observed that in radioresistant cancer cells, the active form of Arl8b increases following radiotherapy, allowing it to interact with other molecules to enhance lysosome trafficking. Further, by knockdown of Arl8b, the scientists showed that this molecule was required for the increase of invasiveness and metastasis.

The researchers analysed data on breast cancer patients from The Cancer Genome Atlas (TCGA) to identify other molecules that may be involved. They found that, in addition to Arl8b levels, prognosis can be correlated with levels of a group of proteins called BORC complex, which is composed of eight subunits. High Arl8b levels correlated with poor prognosis; further, the prognosis could be stratified based on the levels of different BORC subunits. BORC is required for the association of Arl8b and lysosomes. The scientists showed that certain BORC subunits are required for the increased invasiveness of radioresistant cancer cells mediated by Arl8b; in addition, radiotherapy also upregulates genes responsible for the expression of certain BORC subunits.

In this study, the scientists uncovered the effect of radiotherapy on the lysosomal trafficking and some of the molecules controlling this process. Having elucidated the molecular basis for this mechanism, a larger dataset from human cancer patients must be analysed to validate the findings. Further, drugs that target this mechanism must be developed and evaluated as cancer therapies.

Dr. Jin-Min Nam and Dr. Yasuhito Onodera are part of the Radiation Biology group at the Global Center for Biomedical Science and Engineering (GCB), a collaboration between Hokkaido University, Japan, and Stanford University, USA. The group specializes in molecular and cellular oncology, and radiation biology.
-end-


Hokkaido University

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.