Genetic determinants of fertility and ongoing natural selection in humans

October 29, 2020

ROCKVILLE, MD -- An international team of researchers who identified genetic variants associated with reproductive success say their findings could highlight mechanisms underlying fertility and infertility. In addition, their analyses detected genetic alleles under present-day selection, providing an insight into the nature of ongoing natural selection in humans. Iain Mathieson, PhD, a population geneticist at the University of Pennsylvania, presented the results of the study at the American Society of Human Genetics 2020 Virtual Meeting.

"This study is of interest in relation to our findings on reproductive biology and potential links to infertility," says co-author of the study Melinda Mills, PhD, director of the Leverhulme Centre for Demographic Science at the University of Oxford.

"But it also empirically tests one of the most gripping and fundamental questions asked by scientists across many disciplines and decades: Is there evidence of ongoing natural selection in humans and, if so, what is it and how does it operate?"

The new study builds upon previous research on the genetic bases of reproductive behavior (timing and number of children) and reproductive development to identify individual genetic determinants of number of children ever born or childlessness.

The researchers performed genome-wide association studies in up to 785,604 individuals of European ancestry and identified 43 genetic loci associated with either number of children ever born or childlessness. These loci span diverse aspects of reproductive biology across the lifespan, including puberty timing, age at first birth, sex hormone levels, sexuality, and age at menopause.

The findings demonstrate that diverse biological mechanisms contribute to reproductive success, implicating both neuroendocrine and behavioral influences. Ultimately, the researchers believe this might lead to a better understanding of the biology of reproduction and perhaps the genetic basis of infertility.

Furthermore, by integrating these findings with data from ancient selection scans, the researchers were able to identify a unique example of an allele - known as FADS1/2 - that was under selection in our ancient past and remains under selection today.

"Independent research has shown that this allele has been under selection for many thousands of years, potentially linked to changes in diet around the time of the transition to agriculture," says Dr. Mathieson. "Therefore, it represents perhaps the only example of a genetic variant with evidence of both historical and ongoing selection."

Dr. Mathieson says the study raises a number of questions to look into in the future, such as why the FADS1/2 locus is under selection. Experiments in animal models might provide a clue: Knocking out the FADS1 gene in mice leads to both male and female infertility.

Additionally, Dr. Mills points out this study, like nearly 90% of contemporary genetic research, is limited by its use of data from only individuals of European ancestry.

"This is problematic, as we and others have addressed," she says. "Future extensions of this work will examine diverse non-European populations."
-end-
Media Interest: To learn more about this work or set up an interview with Dr. Mathieson or Dr. Mills, please contact press@ashg.org to coordinate.

Reference: Mathieson, I., Day, F.R., Barban, N., Tropf, F.C., Brazel, D., eQTLGen Consortium, BIOS Consortium, Vaez, A., van Zuydam, N., Bitarello, B.D., Snieder, H., den Hoed, M., Ong, K.K., Mills, M., Perry, J.R., and Human Reproductive Behaviour Consortium. (Date). Abstract: Genome-wide analysis identifies genetic effects on reproductive success and ongoing natural selection at the FADS locus. Presented at the American Society of Human Genetics 2020 Virtual Meeting.

The American Society of Human Genetics (ASHG), founded in 1948, is the primary professional membership organization for human genetics specialists worldwide. The Society's nearly 8,000 members include researchers, academicians, clinicians, laboratory practice professionals, genetic counselors, nurses, and others who have a special interest in the field of human genetics.

American Society of Human Genetics

Related Biology Articles from Brightsurf:

Experimental Biology press materials available now
Though the Experimental Biology (EB) 2020 meeting was canceled in response to the COVID-19 outbreak, EB research abstracts are being published in the April 2020 issue of The FASEB Journal.

Structural biology: Special delivery
Bulky globular proteins require specialized transport systems for insertion into membranes.

Cell biology: All in a flash!
Scientists of Ludwig-Maximilians-Universitaet (LMU) in Munich have developed a tool to eliminate essential proteins from cells with a flash of light.

A biology boost
Assistance during the first years of a biology major leads to higher retention of first-generation students.

Cell biology: Compartments and complexity
Ludwig-Maximilians-Universitaet (LMU) in Munich biologists have taken a closer look at the subcellular distribution of proteins and metabolic intermediates in a model plant.

Cell biology: The complexity of division by two
Ludwig-Maximilians-Universitaet (LMU) in Munich researchers have identified a novel protein that plays a crucial role in the formation of the mitotic spindle, which is essential for correct segregation of a full set of chromosomes to each daughter cell during cell division.

Cell biology: Dynamics of microtubules
Filamentous polymers called microtubules play vital roles in chromosome segregation and molecular transport.

The biology of color
Scientists are on a threshold of a new era of color science with regard to animals, according to a comprehensive review of the field by a multidisciplinary team of researchers led by professor Tim Caro at UC Davis.

Kinky biology
How and why proteins fold is a problem that has implications for protein design and therapeutics.

A new tool to decipher evolutionary biology
A new bioinformatics tool to compare genome data has been developed by teams from the Max F.

Read More: Biology News and Biology Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.