CAM modes provide environment-specific water-saving benefits in a leaf metabolic model

October 29, 2020

During photosynthesis, plants take in CO2 from the environment and, with the help of sunlight, convert it into energy-rich sugars. CO2 uptake is regulated via the opening and closing of small pores on the leaf known as stomata. However, when stomata are open, water is lost from the plant through transpiration. Therefore, a balance must be struck between water loss and CO2 uptake. In C3 photosynthesis, the stomata open during the day when sunlight is available. This is energetically efficient, but results in significant water loss in environments with high daytime temperatures and low humidity. As an alternative, some plants can perform Crassulacean acid metabolism (CAM) photosynthesis, in which they open their stomata and temporarily fix CO2 at night when temperatures are lower and humidity is higher. They then release the fixed CO2 and refix it for sugar synthesis during the day while keeping the stomata closed. CAM photosynthesis is water-saving but less efficient.

To answer the question whether full CAM or alternative water-saving modes would be more productive in the environments typically experienced by C3 crops, the researchers coupled a day-night model of leaf metabolism and a gas-exchange model and performed simulations for a wide range of environments. Their results have recently been published in Plant Cell magazine.

"We found that, by running a partial CAM cycle, the plant could save more than 50% of its water while maintaining 80% of its maximum productivity in a temperate climate", says Dr. Nadine Töpfer, head of the independent research group "Metabolic Systems Interactions" at IPK.

Moreover, the model identified an alternative CAM cycle involving the mitochondrial enzyme isocitrate dehydrogenase (ICDH) as a potential contributor to initial carbon fixation at night. "The additional water-saving effect of carbon fixation by ICDH can reach 11% of the total water saving for the conditions tested", says Dr. Nadine Töpfer. "We also found that the CO2 storage capacity in the leaf vacuoles had a major effect on the extent of CAM and would need to be increased to establish a CAM cycle in C3 crops."

In conclusion, the study demonstrates the water-saving potential of introducing CAM-like metabolism into C3 plants under a wide range of environmental conditions and suggests environment-specific engineering targets for improved drought resistance. Dr. Nadine Töpfer, who started the work during the tenure of a Marie-Curie Postdoctoral Fellowship in Professor Lee Sweetlove's group in Oxford and completed it at IPK, says: "Modelling is a powerful tool for exploring complex systems and it provides insights that can guide lab and field-based work. I believe that our results will provide encouragement and ideas for the researchers who aim to transfer the water-conserving trait of CAM plants into other species."

Leibniz Institute of Plant Genetics and Crop Plant Research

Related Photosynthesis Articles from Brightsurf:

During COVID, scientists turn to computers to understand C4 photosynthesis
When COVID closed down their lab, a team from the University of Essex turned to computational approaches to understand what makes some plants better adapted to transform light and carbon dioxide into yield through photosynthesis.

E. coli bacteria offer path to improving photosynthesis
Cornell University scientists have engineered a key plant enzyme and introduced it in Escherichia coli bacteria in order to create an optimal experimental environment for studying how to speed up photosynthesis, a holy grail for improving crop yields.

Showtime for photosynthesis
Using a unique combination of nanoscale imaging and chemical analysis, an international team of researchers has revealed a key step in the molecular mechanism behind the water splitting reaction of photosynthesis, a finding that could help inform the design of renewable energy technology.

Photosynthesis in a droplet
Researchers develop an artificial chloroplast.

Even bacteria need their space: Squished cells may shut down photosynthesis
Introverts take heart: When cells, like some people, get too squished, they can go into defense mode, even shutting down photosynthesis.

Marine cyanobacteria do not survive solely on photosynthesis
The University of Cordoba published a study in a journal from the Nature group that supports the idea that marine cyanobacteria also incorporate organic compounds from the environment.

Photosynthesis -- living laboratories
Ludwig-Maximilians-Universitaet (LMU) in Munich biologists Marcel Dann and Dario Leister have demonstrated for the first time that cyanobacteria and plants employ similar mechanisms and key proteins to regulate cyclic electron flow during photosynthesis.

Photosynthesis seen in a new light by rapid X-ray pulses
In a new study, led by Petra Fromme and Nadia Zatsepin at the Biodesign Center for Applied Structural Discovery, the School of Molecular Sciences and the Department of Physics at ASU, researchers investigated the structure of Photosystem I (PSI) with ultrashort X-ray pulses at the European X-ray Free Electron Laser (EuXFEL), located in Hamburg, Germany.

Photosynthesis olympics: can the best wheat varieties be even better?
Scientists have put elite wheat varieties through a sort of 'Photosynthesis Olympics' to find which varieties have the best performing photosynthesis.

Strange bacteria hint at ancient origin of photosynthesis
Structures inside rare bacteria are similar to those that power photosynthesis in plants today, suggesting the process is older than assumed.

Read More: Photosynthesis News and Photosynthesis Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to