Identifying biomolecule fragments in ionising radiation

October 29, 2020

When living cells are bombarded with fast, heavy ions, their interactions with water molecules can produce randomly scattered 'secondary' electrons with a wide range of energies. These electrons can then go on to trigger potentially damaging reactions in nearby biological molecules, producing electrically charged fragments. So far, however, researchers have yet to determine the precise energies at which secondary electrons produce certain fragments. In a new study published in EPJ D, researchers in Japan led by Hidetsugu Tsuchida at Kyoto University define for the first time the precise exact ranges in which positively and negatively charged fragments can be produced.

Through a better understanding of how biomolecules such as DNA are damaged by ionising radiation, researchers could make important new advances towards more effective cancer therapies. Like molecular bullets, heavy ions will leave behind nanometre-scale tracks as they pass through water; scattering secondary electrons as they deposit their energy. These electrons may then either attach themselves to nearby molecules if they have lower energies, potentially causing them to fragment afterwards; or they may trigger more direct fragmentation if they have higher energies. Since water comprises 70% of all molecules in living cells, this effect is particularly pronounced in biological tissues.

In their previous research, Tsuchida's team bombarded liquid droplets containing the amino acid glycine with fast, heavy carbon ions, then identified the resulting fragments using mass spectrometry. Drawing on these results, the researchers have now used computer models incorporating random sampling methods to simulate secondary electron scattering along a carbon ion's water track. This allowed them to calculate the precise energy spectra of secondary electrons produced during ion bombardment; revealing how they related to the different types of glycine fragment produced. Through this approach, Tsuchida and colleagues showed that while electrons with energies lower 13 electronvolts (eV) went on to produce negatively charged fragments including ionised cyanide and formate, those in the range between 13eV and 100eV created positive fragments such as methylene amine.

H Tsuchida, T Kai, K Kitajima, Y Matsuya, T Majima, M Saito (2020) Relation between biomolecular dissociation and energy of secondary electrons generated in liquid water by fast heavy ions, European Physical Journal D 74:212, DOI: 10.1140/epjd/e2020-10172-x


Related Mass Spectrometry Articles from Brightsurf:

Discovery of a new mass extinction
It's not often a new mass extinction is identified; after all, such events were so devastating they really stand out in the fossil record.

How vitamin C could help over 50s retain muscle mass
New research shows that vitamin C could help over 50s retain muscle mass in later life.

Oncotarget: Tumor markers for carcinoma identified by imaging mass spectrometry
Volume 11, Issue 28 of Oncotarget features 'Lipid and protein tumor markers for head and neck squamous cell carcinoma identified by imaging mass spectrometry' by Schmidt et, al. which reported that the authors used MALDI imaging mass spectrometry and immunohistochemistry to seek tumor-specific expression of proteins and lipids in HNSCC samples.

Nontargeted mass spectrometry reveals PFAS substitutes in New Jersey soils
Using a nontargeted mass-spectral approach, researchers identified the presence of chloro-perfluoro-polyether-carboxylate compounds (ClPFPECAs) in soils across the state of New Jersey.

Large-scale analysis of protein arginine methylation by mass spectrometry
In this research, the researchers offer an overview on state-of-the-art approaches for the high-confidence identification and accurate quantification of protein arginine methylation by high-resolution mass spectrometry methods, which comprise the development of both biochemical and bioinformatics methods.

Proximity of hospitals to mass shootings in US
Nontrauma center hospitals were the nearest hospitals to most of the mass shootings (five or more people injured or killed by a gun) that happened in the US in 2019.

Chemists use mass spectrometry tools to determine age of fingerprints
Chemists at Iowa State University may have solved a puzzle of forensic science: How do you determine the age of a fingerprint?

Keeping guns away from potential mass shooters
Researchers from Michigan State University measured the extent to which mass shootings are committed by domestic violence perpetrators, as well as identyifying how they illegally obtain guns, suggesting how firearm restrictions may prevent these tragedies.

Who is left behind in Mass Drug Administration?
Ensuring equity in the prevention of neglected tropical diseases (NTDs) is critical to reach NTD elimination goals as well as to inform Universal Health Coverage (UHC).

A mechanism capable of preserving muscle mass
By studying the young and aging muscles in mice, researchers from the Myology Research Center (Sorbonne Universite-Inserm) of the Institute of Myology identified a protein, CaVbeta1E that activates the factor GDF5.

Read More: Mass Spectrometry News and Mass Spectrometry Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to