Stronger treatments could cure Chagas disease

October 29, 2020

Researchers in the University of Georgia's Center for Tropical and Emerging Global Diseases have found that a more intensive, less frequent drug regimen with currently available therapeutics could cure the infection that causes Chagas disease, a potentially life-threatening illness affecting up to 300,000 people in the United States.

Trypanosoma cruzi is a single-celled parasitic organism that causes Chagas disease. At least 6 million people are infected by T. cruzi, mostly in South America. Current drug therapies have been ineffective in completely clearing the infection and are associated with severe adverse side effects.

A single dose of benznidazole has been shown to be highly effective in killing more than 90% of parasites. However, after a CTEGD team found some of the parasites enter into a dormancy stage, the researchers hypothesized that an intermittent treatment schedule could be effective.

"In this system we can see what a single dose of drug does," said Rick Tarleton, Regents' Professor in UGA's department of cellular biology. "Does it make sense to give a drug twice daily when the remaining dormant parasites are insensitive to it?"

The investigators found that giving as little as two-and-a-half times the typical daily dose of benznidazole, once per week for 30 weeks, completely cleared the infection, whereas giving the standard daily dose once a week for a longer period did not.

"Current human trials are only looking at giving lower doses over a shorter time period, which is the exact opposite of what we show works," said Tarleton.

Since Tarleton's team worked with a mouse model, how this change in treatment regimen will translate in humans is yet unknown, as are any potential side effects of the higher doses. Adverse reactions already are a problem with current treatments; the hope is that side effects from a less frequent dosage would be more tolerable.

Assessing the success of treatments in Chagas disease is a significant challenge. Tissue samples from infected organisms might not be representative of the entire organ or animal, since low numbers of persistent, dormant parasites can be difficult to detect. Therefore, Tarleton's group used light sheet fluorescence microscopy to view intact whole organs from infected mice.

"With light sheet fluorescence microscopy, you have a broad view of potentially any tissue in the mouse that allows for dependable assessment of parasite load and persistence," said Tarleton. "It gives you an incredible view of the infection."

Using this technology, they learned something new about the dormant parasites: Some were still susceptible to drug treatment. This provides hope that new drug therapies could be developed to target these parasites.

"Discovery of new drugs should continue," Tarleton said. "We still need better drugs."
-end-
Co-led by assistant research scientist Juan Bustamante and research professional Fernando Sanchez in Tarleton's research group, the study's findings appear in Science Translational Medicine.

University of Georgia

Related Parasites Articles from Brightsurf:

When malaria parasites trick liver cells to let themselves in
A new study led by Maria Manuel Mota, group leader at Instituto de Medicina Molecular, now shows that malaria parasites secrete the protein EXP2 that is required for their entry into hepatocytes.

How deadly parasites 'glide' into human cells
A group of scientists led by EMBL Hamburg's Christian Löw provide insights into the molecular structure of proteins involved in the gliding movements through which the parasites causing malaria and toxoplasmosis invade human cells.

How malaria parasites withstand a fever's heat
The parasites that cause 200 million cases of malaria each year can withstand feverish temperatures that make their human hosts miserable.

New studies show how to save parasites and why it's important
An international group of scientists published a paper, Aug. 1, 2020, in a special edition of the journal Biological Conservation that lays out an ambitious global conservation plan for parasites.

More flowers and pollinator diversity could help protect bees from parasites
Having more flowers and maintaining diverse bee communities could help reduce the spread of bee parasites, according to a new study.

How Toxoplasma parasites glide so swiftly (video)
If you're a cat owner, you might have heard of Toxoplasma gondii, a protozoan that sometimes infects humans through contact with contaminated feces in litterboxes.

Parasites and the microbiome
In a study of ethnically diverse people from Cameroon, the presence of a parasite infection was closely linked to the make-up of the gastrointestinal microbiome, according to a research team led by Penn scientists.

Clocking in with malaria parasites
Discovery of a malaria parasite's internal clock could lead to new treatment strategies.

Feeding bluebirds helps fend off parasites
If you feed the birds in your backyard, you may be doing more than just making sure they have a source of food: you may be helping baby birds give parasites the boot.

Scientists discover how malaria parasites import sugar
Researchers at Stockholm University has established how sugar is taken up by the malaria parasite, a discovery with the potential to improve the development of antimalarial drugs.

Read More: Parasites News and Parasites Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.