Waste not, want not: recycled water proves fruitful for greenhouse tomatoes

October 29, 2020

In the driest state in the driest continent in the world, South Australian farmers are acutely aware of the impact of water shortages and drought. So, when it comes to irrigation, knowing which method works best is vital for sustainable crop development.

Now, new research from the University of South Australia shows that water quality and deficit irrigation schemes each have significant effects on crop development, yield and water productivity - with recycled wastewater achieving the best overall results.

Testing different water sources on greenhouse-grown tomatoes, recycled wastewater outperformed both groundwater, and a water mix of 50 per cent groundwater and 50 per cent recycled wastewater.

Researchers also confirmed that growers using deficit irrigation strategies (irrigation that limits watering in a controlled way) performs best at 80 per cent capacity, ensuring maximum water efficiency while maintaining excellent crop growth and yield levels.

Lead researcher and UniSA PhD candidate, Jeet Chand, says that the findings will provide farmers with valuable insights for productive, profitable and sustainable agricultural management.

"Water is an extremely valuable commodity in dry and arid farming regions, making efficient irrigation strategies and alternative water sources essential for agriculture production," Chand says.

"Deficit irrigation is a strategy commonly used by farmers to minimise water use while maximising crop productivity but finding the most effective balance for greenhouse-grown produce can be tricky.

"In our research we tested optimum water deficit levels for greenhouse-grown tomatoes, showing that water at 80 per cent of field capacity is the superior choice for optimal tomato growth in the Northern Adelaide Plains.

"These results were enhanced by the use of recycled wastewater, which not only fares well for plants (by delivering additional nutrients) and for farmers (by reducing the need for fertilizer) but is also great for the environment."

The Northern Adelaide Plains represents 90 per cent of tomato production in South Australia and contains the largest area of greenhouse coverage in the whole of Australia.

This study simulated tomato growing conditions in this region across the most popular growing season and over two years. It tested groundwater, recycled wastewater and a 50:50 mix of both, across four irrigation scenarios with soil moisture levels at 60, 70, 80 and 100 per cent of field capacity.

The highest growth levels were unsurprisingly achieved through 100 per cent field capacity, but mild water stress (80 per cent water capacity) delivered positive water efficiency without significant yield reduction.

While the results are positive for the tomato industry, Chand says there's also good news for the home-gardening tomato aficionado.

"If you're one of the lucky areas to have access to a verified source of recycled water, then your garden can also benefit from its additional nutrients," Chand says.

"Remember, there is a significant difference between grey water - that is, water from the bath or dishes - and recycled water, so be sure to check your water source with your supplier.

"But if you have access to recycled water, great! Your tomatoes will grow like crazy, and you'll be the envy of all your neighbours."
-end-
Notes to editors:

Chand, J., Hewa, G., Hassanli, A. and Myers, B. (2020) 'Evaluation of Deficit Irrigation and Water quality on Production and Water Productivity of Tomato in Greenhouse' in Agriculture, available online at: https://www.researchgate.net/publication/342941667_Evaluation_of_Deficit_Irrigation_and_Water_Quality_on_Production_and_Water_Productivity_of_Tomato_in_Greenhouse

Adelaide suburbs with access to recycled water include Virginia, Seaford Meadows, Seaford Heights and Mawson Lakes. For more information, visit: https://www.sawater.com.au/my-home/saving-water/reuse-and-recycled-water

Media contact:
Annabel Mansfield
T: +61 8 8302 0351
M: +61 417 717 504
E: Annabel.Mansfield@unisa.edu.au

Researcher:
Jeet Chand
M: 61 414 706 324
E: jeet.chand@mymail.unisa.edu.au

University of South Australia

Related Groundwater Articles from Brightsurf:

Majority of groundwater stores resilient to climate change
Fewer of the world's large aquifers are depleting than previously estimated, according to a new study by the University of Sussex and UCL.

Monitoring groundwater changes more precisely
A new method could help to track groundwater changes better than before.

Cause of abnormal groundwater rise after large earthquake
Abnormal rises in groundwater levels after large earthquakes has been observed all over the world, but the cause has remained unknown due to a lack of comparative data before & after earthquakes.

Shrub encroachment on grasslands can increase groundwater recharge
A new study led by Adam Schreiner-McGraw, a postdoctoral hydrology researcher at the University of California, Riverside, modeled shrub encroachment on a sloping landscape and reached a startling conclusion: Shrub encroachment on slopes can increase the amount of water that goes into groundwater storage.

River-groundwater hot spot for arsenic
Naturally occurring groundwater arsenic contamination is a problem of global significance, particularly in South and Southeast Asian aquifers.

Groundwater, a threatened resource requiring sustainable management
The WEARE group at the University of Cordoba analyzed a case of aquifer recovery and concluded that supervision, governance and use of water for high value crops are some of the keys to guaranteeing sustainability of these reserves

Co-occurring contaminants may increase NC groundwater risks
Eighty-four percent of the wells sampled in the Kings Mountain Belt and the Charlotte and Milton Belts of the Piedmont region of North Carolina contained concentrations of vanadium and hexavalent chromium that exceeded health recommendations from the North Carolina Department of Health and Human Services.

Fresh groundwater flow important for coastal ecosystems
Groundwater is the largest source of freshwater, one of the world's most precious natural resources and vital for crops and drinking water.

Natural contaminant threat to drinking water from groundwater
Climate change and urbanisation are set to threaten groundwater drinking water quality, new research from UNSW Sydney shows.

Switching to solar and wind will reduce groundwater use
IIASA researchers explored optimal pathways for managing groundwater and hydropower trade-offs for different water availability conditions as solar and wind energy start to play a more prominent role in the state of California.

Read More: Groundwater News and Groundwater Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.