Scientists Propose Layered Model Of Earth's Inner Core

October 29, 1998

Earth's inner core is not a uniform iron crystal, but is instead composed of two distinct layers, according to researchers funded by the National Science Foundation (NSF).

Seismologists Xiaodong Song from Columbia University's Lamont-Doherty Earth Observatory and Don Helmberger of the California Institute of Technology published their study of the structure of the earth's core in the October 30 issue of the journal Science.

The inner core of the earth is a 1,500-mile-wide sphere comprised mainly of solid iron that rotates in an outer core of molten iron. The scientists used seismic data from earthquakes to infer that the inner core has two distinct parts: a spherical lower part surrounded by a thin, uneven upper layer of different material properties. These findings are likely to affect the current model of how the earth, and its magnetic field, formed.

"This research provides new insights into the structure of the earth's inner core," said Jim Whitcomb, director of NSF's geophysics program which funded the research, "and indicates that we still have much to learn about the composition of our own planet."

Earthquakes generate seismic waves that can be measured as they cross the globe. Song and Helmberger studied seismic waves from earthquakes in the South Atlantic Ocean that passed through the earth's core traveling northward to seismographs in Alaska and Canada. These waves moved faster than seismic waves that traveled from those same southern earthquakes to seismographs in Korea.

The waves moved faster because the earth's inner core is anisotropic, it's iron crystals arranged in such a way that waves move faster in one direction (North to South) than in other directions (East to West).

Song and Helmberger noticed, however, that seismic waves from particular earthquakes reached some northern seismographs before getting to others -- and in the journey became slightly altered. The pair narrowed down the source of these alterations to the inner core. There they found a point of transition 120 miles into the inner core above which the core was no longer anisotropic. It was, instead, isotropic, meaning that seismic waves could travel at the same speed in any direction.

"It is like placing a straw in a glass of water," said Song. "When looking at it from the side of the glass, the straw appears bent. The light is refracted, bent a little as it passes through the water to the air. In the same manner, the seismic wave is refracted as it passes through the anisotropic layer of the core and back to the isotropic layer that surrounds it."

By measuring how far the seismic waves were refracted and the energy that was reflected from the boundary, the researchers were able to determine the shape and thickness of the upper layer of the inner core. The cause of such layering is unclear, but the researchers propose that pressure, thermal and magnetic forces in action at the center of the earth cause the upper layer to change shape through time.
-end-
Media contact:
Greg Lester
(703) 306-1070/glester@nsf.gov

Program contact:
Jim Whitcomb
(703) 306-1556/jwhitcom @nsf.gov
-end-


National Science Foundation

Related Earthquakes Articles from Brightsurf:

AI detects hidden earthquakes
Tiny movements in Earth's outermost layer may provide a Rosetta Stone for deciphering the physics and warning signs of big quakes.

Undersea earthquakes shake up climate science
Sound generated by seismic events on the seabed can be used to determine the temperature of Earth's warming oceans.

New discovery could highlight areas where earthquakes are less likely to occur
Scientists from Cardiff University have discovered specific conditions that occur along the ocean floor where two tectonic plates are more likely to slowly creep past one another as opposed to drastically slipping and creating catastrophic earthquakes.

Does accelerated subduction precede great earthquakes?
A strange reversal of ground motion preceded two of the largest earthquakes in history.

Scientists get first look at cause of 'slow motion' earthquakes
An international team of scientists has for the first time identified the conditions deep below the Earth's surface that lead to the triggering of so-called 'slow motion' earthquakes.

Separations between earthquakes reveal clear patterns
So far, few studies have explored how the similarity between inter-earthquake times and distances is related to their separation from initial events.

How earthquakes deform gravity
Researchers at the German Research Centre for Geosciences GFZ in Potsdam have developed an algorithm that for the first time can describe a gravitational signal caused by earthquakes with high accuracy.

Bridge protection in catastrophic earthquakes
Bridges are the most vulnerable parts of a transport network when earthquakes occur, obstructing emergency response, search and rescue missions and aid delivery, increasing potential fatalities.

Earthquakes, chickens, and bugs, oh my!
Computer scientists at the University of California, Riverside have developed two algorithms that will improve earthquake monitoring and help farmers protect their crops from dangerous insects, or monitor the health of chickens and other animals.

Can a UNICORN outrun earthquakes?
A University of Tokyo Team transformed its UNICORN computing code into an AI-like algorithm to more quickly simulate tectonic plate deformation due to a phenomenon called a ''fault slip,'' a sudden shift that occurs at the plate boundary.

Read More: Earthquakes News and Earthquakes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.