Cheesecloth-like device bends light with little loss: May improve lasers, optical communications, photonic computers

October 30, 2000

Albuquerque, N.M. -- A tiny bar that in appearance resembles cheesecloth has bent infrared beams with very little loss of light in laboratory experiments at the Department of Energy's Sandia National Laboratories. The bar is fabricated from gallium arsenide.

The effect, published in the Oct. 26 issue of Nature and in the Sept. 1 Optics Letters, opens the possibility that the simple, inexpensive, essentially two-dimensional technique can drastically reduce the energy needed to start and operate a laser. Most energy input for lasers merely compensates for the large amount of light ordinarily dispersed uselessly in the lasing process.

Also, the cheesecloth-like structure can be considered essentially a wire for light, because the holes' premeditated size and periodic placement create a structure that blocks most light waves while transmitting those in a selected band of wavelengths that can navigate that geography. Because of the very small light loss, the technique offers the potential of ultimately replacing electronic chips with faster, cooler photonic chips.

The technique could be used to combine light with electrons in a single chip. It also could be used to relay as well as change the direction of optical signals coming through telecommunication lines. "Many people have realized the value of such a structure," says lead researcher Shawn Lin. "The problem has been, how do you build it?"

A two-dimensional photonic crystal
The cheesecloth in scientific terms is referred to as a two-dimensional artificial crystal that conducts light -- a two-D photonic crystal. The placement of holes substitutes in the photonic crystal for the spaces between molecules in real crystals. However, while natural crystals are restricted by their prearranged molecular spacing to permit only certain wavelengths of light to pass through them, researchers can vary the spacing of artificial crystal components, thus allowing any frequencies (within tool limits) to pass.

Built of gallium arsenide without metallic components, the crystals have little measurable intrinsic loss or distortion as they guide infrared light around sharp corners.

While the same researchers had earlier created three-dimensional silicon photonic crystals that bend light with little loss, two-dimensional crystals are cheaper and far easier to build. The problem was that it was thought light would easily escape out the top and bottom of an essentially two-D structure. Sandia researchers got around that problem by capping the structure with silicon oxide on top and aluminum oxide on bottom. The cladding provides a large difference in the index of refraction and dramatically improves the ability of researchers to keep light traveling within the central portion of gallium arsenide.

The crystal itself is of gallium arsenide and is "easy to make," says Lin, who with Sandia researcher Edmond Chow led the project. "One can have the laser and guiding element in the same chip. There is signal binding and switching, all in one place."

The hard part of the problem is to build the structure without it cracking, and then testing it, says Lin.

The structure resembles a narrow cross-section of a beehive with cell centers spaced at 416 nanometers, with holes of only 200 nanometers made by electron beam lithography.

A puzzle
The cladding's refractive index is higher than the refractive index of the material it encloses, thus preventing light from escaping from gallium arsenide. One might wonder how the cladding keeps the light stable as it passes through holes, since the refractive index of air is lower than the refractive index of semiconductors. (A higher refractive index prevents light from entering a substance.) The problem vanishes because the distance across the hole is so small that quantum interference effects come into play, and the light merely moves to the next confined substructure.

The cladding process was pioneered at Sandia as part of its groundbreaking VCSEL (vertical cavity stimulated emission laser) research work.

Scientists at MIT calculated dimensions of the structure.
-end-
The ongoing research is paid for by Sandia's Laboratory-Directed Research and Development program. Sandia is a multiprogram DOE laboratory, operated by a subsidiary of Lockheed Martin Corp. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major research and development responsibilities in national security, energy, and environmental technologies.

DOE/Sandia National Laboratories

Related Laser Articles from Brightsurf:

Laser technology: New trick for infrared laser pulses
For a long time, scientists have been looking for simple methods to produce infrared laser pulses.

Sensors get a laser shape up
Laser writing breathes life into high-performance sensing platforms.

Laser-powered nanomotors chart their own course
The University of Tokyo introduced a system of gold nanorods that acts like a tiny light-driven motor, with its direction of motion is determined by the orientation of the motors.

What laser color do you like?
Researchers at the National Institute of Standards and Technology (NIST) and the University of Maryland have developed a microchip technology that can convert invisible near-infrared laser light into any one of a panoply of visible laser colors, including red, orange, yellow and green.

Laser technology: The Turbulence and the Comb
While the light of an ordinary laser only has one single, well-defined wavelength, a so-called ''frequency comb'' consists of different light frequencies, which are precisely arranged at regular distances, much like the teeth of a comb.

A laser for penetrating waves
The 'Landau-level laser' is an exciting concept for an unusual radiation source.

Laser light detects tumors
A team of researchers from Jena presents a groundbreaking new method for the rapid, gentle and reliable detection of tumors with laser light.

The first laser radio transmitter
For the first time, researchers at Harvard School of Engineering have used a laser as a radio transmitter and receiver, paving the way for towards ultra-high-speed Wi-Fi and new types of hybrid electronic-photonic devices.

The random anti-laser
Scientists at TU Wien have found a way to build the 'opposite' of a laser -- a device that absorbs a specific light wave perfectly.

Laser 'drill' sets a new world record in laser-driven electron acceleration
Combining a first laser pulse to heat up and 'drill' through a plasma, and another to accelerate electrons to incredibly high energies in just tens of centimeters, scientists have nearly doubled the previous record for laser-driven particle acceleration at Berkeley Lab's BELLA Center.

Read More: Laser News and Laser Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.