New brain cells listen before they talk

October 30, 2007

New Haven, Conn.--Newly created neurons in adults rely on signals from distant brain regions to regulate their maturation and survival before they can communicate with existing neighboring cells--a finding that has important implications for the use of adult neural stem cells to replace brain cells lost by trauma or neurodegeneration, Yale School of Medicine researchers report in The Journal of Neuroscience.

In fact, certain important synaptic connections--the circuitry that allows the brain cells to talk to each other--do not appear until 21 days after the birth of the new cells, according to Charles Greer, professor of neurosurgery and neurobiology, and senior author of the study, In the meantime, other areas of the brain provide information to the new cells, preventing them from disturbing ongoing functions until the cells are mature.

It was established in previous studies that several regions of the adult brain continue to generate new neurons, which are then integrated into existing brain circuitry. However the mechanisms that allowed this to happen were not known.

To answer this question, Greer and Mary Whitman, an M.D./Ph.D. candidate at Yale, studied how new neurons are integrated into the olfactory bulb, which helps discriminate between odors, among other functions.

They found that new neurons continue to mature for six to eight weeks after they are first generated and that the new neurons receive input from higher brain regions for up to 10 days before they can make any outputs. The other brain regions then continue to provide information to the new neurons as they integrate into existing networks.

The discovery of this previously unrecognized mechanism is significant, said Greer, because "if we want to use stem cells to replace neurons lost to injury or disease, we must ensure that they do not fire inappropriately, which could cause seizures or cognitive dysfunction."
-end-
The Journal of Neuroscience 27: 9951-9961 (October 2007)

Yale University

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.