Breakthrough in fight against Hendra virus

October 30, 2009

There has been a breakthrough in the fight against the deadly Hendra virus following the development of a treatment which shows great potential to save the lives of people who become infected with the virus.

A scientific team from CSIRO and the US has demonstrated that administering human monoclonal antibodies after exposure to Nipah virus, which is closely related to Hendra virus, protected animals from challenge in a disease model.

According to CSIRO's Dr Deborah Middleton, who led the experiments at Australia's maximum biosecurity facility, CSIRO's Australian Animal Health Laboratory (AAHL) in Geelong, said the findings are extremely encouraging.

"Our research clearly suggests that an effective treatment for Hendra virus infections in humans should be possible, given the very strong cross-reactive activity this antibody has against Hendra virus," she said.

Antibodies - proteins found in blood or other bodily fluids of vertebrates - are used by the immune system to identify and neutralise bacteria and viruses.

First identified in Brisbane and isolated by CSIRO scientists in 1994, Hendra virus, which spreads from flying foxes, has regularly infected horses in Australia. Of the 12 equine outbreaks, four have led to human infection, with four of the seven known human cases being fatal, the most recent of these in September 2009. Human infection results from close contact with the blood and/or mucus of infected horses.

Dr Middleton said the success of the antibody will probably depend on dose and time of administration.

"As Hendra and Nipah viruses cause severe disease in humans, a successful application of this antibody as a post-exposure therapy will likely require early intervention.

"To make clinical use of it against these viruses, it will need to be prepared under proper manufacturing guidelines, carefully evaluated again in animal models and safety tested for human use. We hope this demonstration of antiviral activity will lead to some immediate activities to facilitate further development for its use in humans," Dr Middleton said.
-end-
The results of this latest research, conducted in collaboration with scientists from the US's Uniformed Services University of the Health Sciences, National Cancer Institute and the National Institutes of Health in the US, were published today in the journal PLoS Pathogens (view the article at: http://dx.plos.org/10.1371/journal.ppat.1000642).

Image available at: http://www.scienceimage.csiro.au/mediarelease/mr09-199.html

Media Assistance:
Emma Wilkins, CSIRO Livestock Industries
Ph:+61 3 5227 5123
E: Emma.Wilkins@csiro.au

CSIRO Australia

Related Virus Articles from Brightsurf:

Researchers develop virus live stream to study virus infection
Researchers from the Hubrecht Institute and Utrecht University developed an advanced technique that makes it possible to monitor a virus infection live.

Will the COVID-19 virus become endemic?
A new article in the journal Science by Columbia Mailman School researchers Jeffrey Shaman and Marta Galanti explores the potential for the COVID-19 virus to become endemic, a regular feature producing recurring outbreaks in humans.

Smart virus
HSE University researchers have found microRNA molecules that are potentially capable of repressing the replication of human coronaviruses, including SARS-CoV-2.

COVID-19 - The virus and the vasculature
In severe cases of COVID-19, the infection can lead to obstruction of the blood vessels in the lung, heart and kidneys.

Lab-made virus mimics COVID-19 virus
Researchers at Washington University School of Medicine in St. Louis have created a virus in the lab that infects cells and interacts with antibodies just like the COVID-19 virus, but lacks the ability to cause severe disease.

Virus prevalence associated with habitat
Levels of virus infection in lobsters seem to be related to habitat and other species, new studies of Caribbean marine protected areas have shown.

Herpes virus decoded
The genome of the herpes simplex virus 1 was decoded using new methods.

A new biosensor for the COVID-19 virus
A team of researchers from Empa, ETH Zurich and Zurich University Hospital has succeeded in developing a novel sensor for detecting the new coronavirus.

How at risk are you of getting a virus on an airplane?
New 'CALM' model on passenger movement developed using Frontera supercomputer.

Virus multiplication in 3D
Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies.

Read More: Virus News and Virus Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.