First-of-its-kind study creates new tool for targeted cancer drug development

October 30, 2011

PHILADELPHIA, PA (October 30 2011)--In a technical tour de force, scientists at Fox Chase Cancer Center have cataloged and cross-indexed the actions of 178 candidate drugs capable of blocking the activity of one or more of 300 enzymes, including enzymes critical for cancer and other diseases. Additionally, a free library of the results has been made available online to the research community. This unique library represents an important new tool for accelerating the development of an entire class of targeted cancer drugs.

The enzymes, called kinases, catalyze a wide array of vital biological activities. Unfortunately, they can also act as drivers for many forms of cancer. For this reason, the candidate drugs, called kinase inhibitors, have the potential to act as powerful anti-cancer agents. They can also interfere with normal processes in the body, however, resulting in side effects. With the new library, researchers will be able to analyze the complex interactions of these inhibitors with their targets to develop cancer drugs that block specific kinases responsible for disease while seeking to avoid major side effects. The results from the Fox Chase team's first-of-its-kind study will appear in the November issue of Nature Biotechnology.

"These results have pushed the field closer to finding truly specific inhibitors of the processes that drive cancer," says Jeffrey R. Peterson, Ph.D., associate professor in the Cancer Biology Program at Fox Chase and senior author on the new study. "We now have a collection of kinase inhibitors that are more well-characterized and understood than any other library. The next step is to use this information to identify specific, effective therapies that stop cancer in its tracks while avoiding healthy processes."

Already, some cancer patients receive kinase inhibitors to treat their disease, and many more such drugs are being developed, says Peterson. But the body contains more than 500 different kinases performing numerous functions. And the vast majority of kinase inhibitors will act on more than one kinase, and so have the potential to interfere with both cancer and the normal processes the body needs for health and survival. Not surprisingly, some of the kinase inhibitors approved for use in cancer cause significant side effects, such as cardiovascular problems.

Until the last few years, however, researchers simply didn't have the technology to observe which kinases a specific inhibitor acted upon. Recently, however, the company Reaction Biology Corporation developed a way to observe the suite of effects from one kinase inhibitor.

For the first time, Peterson and his team catalogued the activity of 178 kinase inhibitors against 300 kinases. The experiment was like observing what happens after shooting a scattergun at a wall of balloons, he says. Before, scientists could only tell if you popped one particular balloon - now, however, they can see if other balloons were hit, as well. "We're essentially shining a light on the wall of balloons so we have a much better view of the balloons that were popped."

Not surprisingly, the researchers found that kinase inhibitors targeted multiple kinases, even some that appeared to be unrelated to each other. They have deposited this massive library of results on a free website so scientists studying kinases and inhibitors can learn more about their multiple interactions.

The fact that kinase inhibitors target multiple kinases may actually be a good thing, says Peterson. Initially, scientists had hoped to find an inhibitor that targets one specific kinase involved in cancer; now, they realize that cancer rarely results from one kinase. Instead, multiple kinases likely collaborate to produce the disease -- so to stop that process, you may have to hit all of those kinases together. "It may not be possible to develop a successful drug against one kinase," he says. Indeed, some kinase inhibitors that are effective in cancer -- Sutent (sunitinib) and Sprycel (dasatinib) -- are known to target multiple kinases.

Already, the data have identified inhibitors that act on particular kinases that researchers believe are involved in cancer, but had no known inhibitor - suggesting researchers may one day be able to modify those therapies so they target only those specific kinases and others involved in cancer and avoid kinases unrelated to the disease. In addition, Peterson and his team observed the suite of various kinases affected by cancer drugs that are already in use, with the hope researchers could reduce side effects by modifying the drugs to avoid those healthy kinases.
-end-
Co-authors include Theonie Anastassiadis and Karthik Devarajan, also from the Cancer Biology Progam at Fox Chase Cancer Center, and Sean Deacon and Haiching Ma from Reaction Biology Corporation.

The study was supported by a W.W. Smith Foundation Award, the Fox Chase Cancer Center Head and Neck Cancer Keystone Program, and grants from the National Institutes of Health.

Fox Chase Cancer Center is one of the leading cancer research and treatment centers in the United States. Founded in 1904 in Philadelphia as one of the nation's first cancer hospitals, Fox Chase was also among the first institutions to be designated a National Cancer Institute Comprehensive Cancer Center in 1974. Fox Chase researchers have won the highest awards in their fields, including two Nobel Prizes. Fox Chase physicians are also routinely recognized in national rankings, and the Center's nursing program has received the Magnet status for excellence three consecutive times. Today, Fox Chase conducts a broad array of nationally competitive basic, translational, and clinical research, with special programs in cancer prevention, detection, survivorship, and community outreach. For more information, visit Fox Chase's Web site at www.foxchase.org or call 1-888-FOX CHASE or (1-888-369-2427).

Fox Chase Cancer Center

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.