Scripps Research Institute scientists capture picture of 'MicroRNA' in action

October 30, 2014

LA JOLLA, CA--October 30, 2014--Biologists at The Scripps Research Institute (TSRI) have described the atomic-level workings of "microRNA" molecules, which control the expression of genes in all animals and plants.

The findings add greatly to the understanding of a fundamental system of regulation in biology, and should accelerate the development of therapies that harness its power.

"We've obtained the clearest picture to date of how these crucial gene regulators work," said TSRI Associate Professor Ian J. MacRae, who was senior investigator for the study reported in the October 31, 2014 issue of the journal Science.

The Gene Silencers

MicroRNAs, as their name suggests, are snippets of ribonucleic acid, only about 22 nucleotides long. Encoded by genes, they are meant to function as RNA molecules and are never translated into proteins. In humans, there are almost 2,000 distinct microRNAs, which collectively regulate somewhere between 30 and 80 percent of human genes.

MicroRNAs do their work by intercepting and effectively "silencing" the RNA transcripts of genes. These tiny gene-regulators operate in all multicellular organisms, including all plants and animals; even some viruses have them. Moreover, their normal workings appear to be disrupted in many human diseases. Yet their central importance in biology has become apparent only in the last decade or so, and the details of how they silence their targets have started to come into focus only in the last few years.

MicroRNAs operate not on their own, but in the company of large proteins called Argonautes, which microRNAs effectively guide to their RNA targets. In a study reported in Science in 2012, MacRae and his graduate student Nicole T. Schirle used X-ray crystallography techniques to determine, for the first time, the atomic structure of human Argonaute bound to a microRNA and its RNA target.

Seeing How the Process Works

In the new study, the researchers were able to determine the structure of human Argonaute-plus-microRNA in the act of binding to an RNA target. "We could see from these structural data the details of how the process works," said MacRae.

The data show that Argonaute holds a microRNA molecule in a way that initially exposes only a few of its nucleotides--presumably to minimize interactions with RNAs that aren't in its target set. These few exposed microRNA nucleotides will, however, stick to the complementary nucleotide sequences found on target RNAs. When such contact is made, Argonaute rearranges its structure to facilitate a tighter embrace of more closely matching targets.

"A key helix structure on Argonaute moves out of the way, allowing further base-pairing between the microRNA guide and its target," said Schirle. "In general, Argonaute changes its conformation so as to expand the binding and stabilize the interaction with an appropriate target RNA."

MicroRNAs bind to RNA targets that match its sequence only very partially, in short stretches, which is why a single microRNA may be able to intercept the transcripts of hundreds of different genes. When it binds such transcripts, the microRNA-Argonaute team summons other molecules that effectively block the transcripts from further meaningful activity. By contrast, related regulatory molecules called short interfering RNAs (siRNAs) match their RNA targets more completely and induce Argonaute to silence those targets more directly with a built-in enzyme that slices them in two.

The study hints at how Argonaute switches to this more direct mode of silencing. "Slicing requires a catalytic magnesium ion, which has to be held in a precise position over the target," said Schirle. "What we see now is that this magnesium ion is positioned in the wrong place in the Argonaute structure when a microRNA is bound to its target, so that the target won't be sliced. We propose that a more extensive pairing with the target RNA, as siRNAs make, would then swing the magnesium ion into the correct position to enable slicing."

Untapped Medical Potential

The new wealth of structural detail on microRNA-Argonaute function will be of broad scientific interest, but should also make a big impact on medicine. The great therapeutic potential of drugs that mimic or inhibit microRNAs to control key processes in cells is at this point completely untapped.

"There is a whole new class of microRNA-targeting drugs that have been proposed and have started to be developed," said MacRae, "and here we've provided information that should be very helpful in designing such drugs."
The paper, "Structural basis for microRNA targeting," was also co-authored by Jessica Sheu-Gruttadauria, a graduate student in the MacRae Laboratory. Funding for the research was provided by the National Institutes of Health (R01 GM104475).

Scripps Research Institute

Related Microrna Articles from Brightsurf:

Researchers identify microRNA that shows promise for hair regrowth
Researchers from North Carolina State University have identified a microRNA (miRNA) that could promote hair regeneration.

Atherosclerosis -- How a microRNA protects vascular integrity
Ludwig-Maximilian-Universitaet (LMU) in Munich researchers have discovered a hitherto unknown molecular function of a specific microRNA that preserves integrity of the endothelium and reduces the risk of atherosclerosis.

MicroRNA exhibit unexpected function in driving cancer
New research shows that both strands of microRNA cooperate to drive growth and aggressiveness across cancer types, suggesting that these molecules may be more central in deadly cancers than previously thought.

Investigators narrow in on a microRNA for treating multiple sclerosis
Investigators from Brigham and Women's Hospital have discovered a microRNA -- a small RNA molecule -- that increases during peak disease in a mouse model of MS and in untreated MS patients.

MicroRNA comprehensively analyzed
Messenger RNA transmits genetic information to the proteins, and microRNA plays a key role in the regulation of gene expression.

Novel strategy using microRNA biomarkers can distinguish melanomas from nevi
Melanoma is the least common but one of the most deadly skin cancers.

Methylation of microRNA may be a new powerful biomarker for cancer
Researchers from Osaka University found that levels of methylated microRNA were significantly higher in tissue and serum from cancer patients compared with that from normal controls.

New insight into microRNA function can give gene therapy a boost
Scientists at the University of Eastern Finland and the University of Oxford have shown that small RNA molecules occurring naturally in cells, i.e. microRNAs, are also abundant in cell nuclei.

Researchers unlock mysteries of complex microRNA oncogenes
A new collaborative study, led by researchers at McGill University's Goodman Cancer Research Centre (GCRC), and published in the journal Molecular Cell, uncovers novel functions for polycistronic microRNAs and showing how cancers such as lymphoma twist these functions to reorganize the information networks that control gene expression.

MicroRNA-like RNAs contribute to the lifestyle transition of Arthrobotrys oligospora
Lifestyle transition is a fundamental mechanism that fungi have evolved to survive and proliferate in different environments.

Read More: Microrna News and Microrna Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to