Making lab-grown tissues stronger

October 30, 2014

Lab-grown tissues could one day provide new treatments for injuries and damage to the joints, including articular cartilage, tendons and ligaments.

Cartilage, for example, is a hard material that caps the ends of bones and allows joints to work smoothly. UC Davis biomedical engineers, exploring ways to toughen up engineered cartilage and keep natural tissues strong outside the body, report new developments this week in the journal Proceedings of the National Academy of Sciences.

"The problem with engineered tissue is that the mechanical properties are far from those of native tissue," said Eleftherios Makris, a postdoctoral researcher at the UC Davis Department of Biomedical Engineering and first author on the paper. Makris is working under the supervision of Professor Kyriacos A. Athanasiou, a distinguished professor of biomedical engineering and orthopedic surgery, and chair of the Department of Biomedical Engineering.

While engineered cartilage has yet to be tested or approved for use in humans, a current method for treating serious joint problems is with transplants of native cartilage. But it is well known that this method is not sufficient as a long-term clinical solution, Makris said.

The major component of cartilage is a protein called collagen, which also provides strength and flexibility to the majority of our tissues, including ligaments, tendons, skin and bones. Collagen is produced by the cells and made up of long fibers that can be cross-linked together.

Engineering new cartilage

Researchers in the Athanasiou group have been maintaining native cartilage in the lab and culturing cartilage cells, or chondrocytes, to produce engineered cartilage.

"In engineered tissues the cells produce initially an immature matrix, and the maturation process makes it tougher," Makris said.

Knee joints are normally low in oxygen, so the researchers looked at the effect of depriving native or engineered cartilage of oxygen. In both cases, low oxygen led to more cross-linking and stronger material. They also found that an enzyme called lysyl oxidase, which is triggered by low oxygen levels, promoted cross-linking and made the material stronger.

"The ramifications of the work presented in the PNAS paper are tremendous with respect to tissue grafts used in surgery, as well as new tissues fabricated using the principles of tissue engineering," Athanasiou said. Grafts such as cadaveric cartilage, tendons or ligaments -- notorious for losing their mechanical characteristics in storage -- can now be treated with the processes developed at UC Davis to make them stronger and fully functional, he said.

Athanasiou also envisions that many tissue engineering methods will now be altered to take advantage of this strengthening technique.
-end-
Other authors on the paper are Donald Responte, Nikolaos Paschos and Jerry Hu, all at the Department of Biomedical Engineering. Funding was provided by the National Institutes of Health.

University of California - Davis

Related Engineering Articles from Brightsurf:

Re-engineering antibodies for COVID-19
Catholic University of America researcher uses 'in silico' analysis to fast-track passive immunity

Next frontier in bacterial engineering
A new technique overcomes a serious hurdle in the field of bacterial design and engineering.

COVID-19 and the role of tissue engineering
Tissue engineering has a unique set of tools and technologies for developing preventive strategies, diagnostics, and treatments that can play an important role during the ongoing COVID-19 pandemic.

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.

Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.

Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.

New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.

Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.

Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.

Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.

Read More: Engineering News and Engineering Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.