Rewiring cell metabolism slows colorectal cancer growth

October 30, 2014

Summary: (SALT LAKE CITY) - Cancer is an unwanted experiment in progress. As the disease advances, tumor cells accumulate mutations, eventually arriving at ones that give them the insidious power to grow uncontrollably and spread. Distinguishing drivers of cancer from benign mutations open opportunities for developing targeted cancer therapies.

A University of Utah-led study reports that cancers select against a protein complex called the mitochondrial pyruvate carrier (MPC), and re-introduction of MPC in colon cancer cells impairs several properties of cancer, including growth. The research, which appears online on Oct. 30 in Molecular Cell, implicates changes in a key step in metabolism - the way cellular fuel is utilized - as an important driver of colon cancer that is also likely to be important in many other cancer settings.

Cancers appear to do whatever they can to get rid of MPC, a protein involved in carbohydrate metabolism, shows the study led by Jared Rutter, Ph.D., professor of biochemistry and Dee Glen and Ida W. Smith Endowed Chair for Cancer Research at the University of Utah. At least 18 types of cancers - colon, brain, breast, and liver among them - have significantly less MPC than normal adult cells. Some cancers simply delete a region of the genome that contains one of the MPC genes, others find different ways to dampen MPC expression. In fact, a survey of patient biopsies shows that the less MPC there is, the more aggressive the cancer becomes.

"Loss of MPC seems to be a biomarker for cancer aggressiveness and patient survival," said Rutter, also co-director of the Diabetes and Metabolism Center at the University of Utah, and co-leader of the Nuclear Control of Cell Growth and Differentiation Program at the Huntsman Cancer Institute. "That was our first clue that MPC might be important."

Even more striking, when Rutter's group reintroduced MPC into colon cancer cell lines, properties that define them as cancerous, reverted. The cells divide less frequently under certain conditions and decrease expression of stem cell markers, an early step frequently defining the potential to form tumors and spread. Further, the engineered cells are dramatically impaired in their ability to form tumors after injection into mice. Tumors containing cells with MPC were as small as one-fourth the size of tumors made from cells without the protein complex.

"We think these results show that elimination of MPC is an early and important step in development of cancer," said John Schell, who is co-first author with Kristofor Olson, both M.D.-Ph.D. students at the University of Utah. "Finding the stem cell connection was probably the most exciting part for us, and is something we'll pursue further to understand how loss of MPC changes cell behavior."

The role of MPC in the normal cell, and what loss of MPC does to a cancer cell, addresses an observation first made nearly one century ago. Nobel Prize-wining biochemist Otto Warburg noted that cancer cells change their metabolism to support uncontrolled growth and proliferation. Scientists later found the way in which the metabolite pyruvate is processed is key to these metabolic changes. In normal adult cells, pyruvate enters the mitochondria, the cell's powerhouse, and fuels energy production. In cancer, pyruvate is diverted from the mitochondria to an alternative metabolic pathway that makes cell-building material.

Scientists had long suspected the so-called Warburg effect seen in cancer was contingent upon controlling entry of pyruvate into the mitochondria. But there was no way to directly test the idea until two years ago, when Rutter's group and others identified MPC as pyruvate's doorway to the mitochondria. The current report in Molecular Cell shows that cancer cells shut that door by repressing MPC, and that experimentally re-opening the door by re-introducing MPC not only inhibits cancer growth, but also redirects pyruvate to the metabolic pathway used in normal cells. In other words, MPC counteracts the Warburg effect.

"This makes sense because MPC is a pinch point in metabolism," said Rutter. "Our work, taken together with that from many other laboratories, shows that most cancer cells are completely reliant on this unusual metabolism known as the Warburg effect."

Understanding the Warburg effect has been an area of intense interest in recent years because of the potential to translate those discoveries into new cancer therapeutics. "We think this information can be used to design therapies that are specifically toxic to cancer cells," said Rutter.
-end-
This research was funded by grants from the National Institutes of Health and the Nora Eccles Treadwell Foundation

"A Role for the Mitochondrial Pyruvate Carrier as a Repressor of the Warburg Effect and Colon Cancer Growth" appears online in Molecular Cell on October 30.

Rutter, Schell, and Olson were joined by co-authors Amy Hawkins, Jonathan Van Vranken, and Espen Earl of University of Utah School of Medicine; Lei Jiang, Robert Egnatchik, and Ralph DeBerardinis of UT Southwestern Medical Center; and Jianxin Xie of Cell Signaling Technology, Inc.

University of Utah Health Sciences

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.