Nav: Home

Liquids take a shine to terahertz radiation

October 30, 2017

In a significant breakthrough, scientists at the Tata Institute of Fundamental Research (TIFR), Mumbai have devised a high power radiation source in the much sought after terahertz (THz) region of the electromagnetic spectrum. This study, done in collaboration with laboratories in Greece and France, will be unveiled in the journal Nature Communications on Oct 30, 2017.

The search for new and brighter radiation sources is an enduring quest in science and technology [1,2]. While there are many sources across the entire electromagnetic spectrum, the terahertz region (wedged between the infrared/optical and the microwave regions) has been a challenge and it is only in the last twenty years that sources have started becoming available. High power terahertz radiation has typically been available from large, complex machines like Free Electron Lasers. Compact sources, relying on semiconductor antennas and special crystals excited by visible/infrared femtosecond laser pulses, have very limited energy outputs, typically in the nanojoule (billionth of a joule) level or lower. They are not useful for many applications. High power femtosecond lasers have however, excited terahertz emission that are a thousand times larger (microjoules) from a plasma formed in air, under special conditions [3].

For a long time, researchers in this area have believed that liquids could not give out significant terahertz radiation, because they would efficiently reabsorb whatever was generated. Yet, this is where the TIFR researchers proved successful. In their experiments, they irradiated common laboratory liquids like methanol, acetone, dicholorethane, carbon disulphide and even water, with moderate energy femtosecond laser pulses, ionizing the liquid and forming long plasma channels called filaments. To their delight they measured energies as high as 50 microjoules, thousands of times larger than the energies emitted by most existing sources and 10-20 times larger than those produced from air. Their careful characterization and systematic study showed that the experimental conditions were simpler than those needed for air. The mechanism that facilitates the large output (in spite of the deleterious absorption) has emerged from models used by their theoretical collaborators from the Institute of Electronic Structure and Laser, Foundation for Research and Technology Hellas, Greece and Ecole Polytechnique, Paris. The essence of this model is that the femtosecond laser pulse induces secondary emissions in the liquid which would then combine with the incident laser pulse to produce the observed terahertz radiation.

The TIFR researchers are bullish about the applications of their liquid source, the brightest among compact, tabletop sources. They foresee many applications in terahertz imaging, material analysis, explosives detection and terahertz nonlinear optics. This new source certainly increases the stock of terahertz radiation. Shall we say, terahertz liquidity boosted?
-end-
References:

[1] Tonouchi, M. "Cutting-edge terahertz technology." Nat. Photonics 1, 97-105 (2007).

[2] Baierl, S. et al. "Nonlinear spin control by terahertz-driven anisotropy fields." Nat. Photonics 10, 715-718 (2016).

[3] Kim, K. Y., Taylor, A. J., Glownia, J. H. & Rodriguez, G. "Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions." Nat. Photonics 2, 605-609 (2008).

Tata Institute of Fundamental Research

Related Laser Articles:

A laser for penetrating waves
The 'Landau-level laser' is an exciting concept for an unusual radiation source.
Laser light detects tumors
A team of researchers from Jena presents a groundbreaking new method for the rapid, gentle and reliable detection of tumors with laser light.
The first laser radio transmitter
For the first time, researchers at Harvard School of Engineering have used a laser as a radio transmitter and receiver, paving the way for towards ultra-high-speed Wi-Fi and new types of hybrid electronic-photonic devices.
The random anti-laser
Scientists at TU Wien have found a way to build the 'opposite' of a laser -- a device that absorbs a specific light wave perfectly.
Laser 'drill' sets a new world record in laser-driven electron acceleration
Combining a first laser pulse to heat up and 'drill' through a plasma, and another to accelerate electrons to incredibly high energies in just tens of centimeters, scientists have nearly doubled the previous record for laser-driven particle acceleration at Berkeley Lab's BELLA Center.
Laser physics: Transformation through light
Laser physicists have taken snapshots of how C60 carbon molecules react to extremely short pulses of intense infrared light.
Laser-induced graphene gets tough, with help
Laser-induced graphene created at Rice University combines with many materials to make tough, conductive composites for wearable electronics, anti-icing, antimicrobial applications, sensors and water treatment.
How molecules teeter in a laser field
When molecules interact with the oscillating field of a laser, an instantaneous, time-dependent dipole is induced.
Laser blasting antimatter into existence
Antimatter is an exotic material that vaporizes when it contacts regular matter.
New laser advances
Lasers are poised to take another step forward: Researchers at Case Western Reserve University, in collaboration with partners around the world, have been able to control the direction of a laser's output beam by applying external voltage.
More Laser News and Laser Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.