Rousing masses to fight cancer with open source machine learning

October 30, 2017

Here's an open invitation to steal. It goes out to cancer fighters and tempts them with a new program that predicts cancer drug effectiveness via machine learning and raw genetic data.

The researchers who built the program at the Georgia Institute of Technology would like cancer fighters to take it for free, or even just swipe parts of their programming code, so they've made it open source. They hope to attract a crowd of researchers who will also share their own cancer and computer expertise and data to improve upon the program and save more lives together.

The researchers' invitation to take their code is also a gauntlet.

They're challenging others to come beat them at their own game and help hone a formidable software tool for the greater good. Not only the labor but also the fruits will remain openly accessible to benefit the treatment of patients as best possible.

"We don't want to hold the code or data for ourselves or make profits with this," said John McDonald, the director of Georgia Tech's Integrated Cancer Research Center. "We want to keep this wide open so it will spread."

The goods

Researchers wanting to participate can start by reading a new study about the software published on October 26, 2017, in the journal PLOS One. There they will find links to download the software from GitHub and to access the code.

They'll start out with a current program that has been about 85% accurate in assessing treatment effectiveness of nine drugs across the genetic data of 273 cancer patients. The study by McDonald and collaborator Fredrik Vannberg details how and why.

"Nine drugs are in the published study, but we've actually run about 120 drugs through the program all total," said Vannberg, an assistant professor in Georgia Tech's School of Biological Sciences.

The program uses proven machine learning mechanisms and also normalizes data. The latter allows the machine learning to work with data from varying sources by making them compatible.

The bias

And the researchers have reduced human bias about which data are important for predicting outcomes.

"It's much more effective to put in loads of raw data and let the algorithm sort it out," McDonald said. "It's looking for correlations, not causes, so it's not good to preselect data for what you suspect are most relevant."

One big bias the researchers tossed out was a concentration only on gene expression data pertaining to the specific type of cancer they were aiming to treat.

"It turns out that it's better to give the program data from a broad diversity of cancers, and that will actually later give a better prediction of drug effectiveness for a specific cancer like breast cancer," Vannberg said.

"On a molecular level, some breast cancers, for example, are going to be more similar to some ovarian cancers than to other breast cancers," McDonald said. "We just let the algorithm work with about everything we had, and we got high accuracy."

The winners

The researchers also want the project to pool large amounts of anonymous patient treatment success and failure data, which will help the program optimize predictions for everyone's benefit. But that doesn't mean some companies can't benefit, too.

"If a company comes along and makes profits while using the program to help patients, that's fine, and there's no obligation to give back to the project," said McDonald, who is also a professor in Georgia Tech's School of Biological Sciences. "Others may just take if they so please."

But hopefully, most players will catch the spirit of kindness.

"With our project, we're advertising that sharing should be what everybody does," Vannberg said. "This can be a win for everybody, but really it's a win for the cancer patients."
-end-
Georgia Tech researchers Cai Huang and Roman Mezencev coauthored the study. The research was funded by the Rising Tide Foundation.

Georgia Institute of Technology

Related Breast Cancer Articles from Brightsurf:

Oncotarget: IGF2 expression in breast cancer tumors and in breast cancer cells
The Oncotarget authors propose that methylation of DVDMR represents a novel epigenetic biomarker that determines the levels of IGF2 protein expression in breast cancer.

Breast cancer: AI predicts which pre-malignant breast lesions will progress to advanced cancer
New research at Case Western Reserve University in Cleveland, Ohio, could help better determine which patients diagnosed with the pre-malignant breast cancer commonly as stage 0 are likely to progress to invasive breast cancer and therefore might benefit from additional therapy over and above surgery alone.

Partial breast irradiation effective treatment option for low-risk breast cancer
Partial breast irradiation produces similar long-term survival rates and risk for recurrence compared with whole breast irradiation for many women with low-risk, early stage breast cancer, according to new clinical data from a national clinical trial involving researchers from The Ohio State University Comprehensive Cancer Center - Arthur G.

Breast screening linked to 60 per cent lower risk of breast cancer death in first 10 years
Women who take part in breast screening have a significantly greater benefit from treatments than those who are not screened, according to a study of more than 50,000 women.

More clues revealed in link between normal breast changes and invasive breast cancer
A research team, led by investigators from Georgetown Lombardi Comprehensive Cancer Center, details how a natural and dramatic process -- changes in mammary glands to accommodate breastfeeding -- uses a molecular process believed to contribute to survival of pre-malignant breast cells.

Breast tissue tumor suppressor PTEN: A potential Achilles heel for breast cancer cells
A highly collaborative team of researchers at the Medical University of South Carolina and Ohio State University report in Nature Communications that they have identified a novel pathway for connective tissue PTEN in breast cancer cell response to radiotherapy.

Computers equal radiologists in assessing breast density and associated breast cancer risk
Automated breast-density evaluation was just as accurate in predicting women's risk of breast cancer, found and not found by mammography, as subjective evaluation done by radiologists, in a study led by researchers at UC San Francisco and Mayo Clinic.

Blood test can effectively rule out breast cancer, regardless of breast density
A new study published in PLOS ONE demonstrates that Videssa® Breast, a multi-protein biomarker blood test for breast cancer, is unaffected by breast density and can reliably rule out breast cancer in women with both dense and non-dense breast tissue.

Study shows influence of surgeons on likelihood of removal of healthy breast after breast cancer dia
Attending surgeons can have a strong influence on whether a patient undergoes contralateral prophylactic mastectomy after a diagnosis of breast cancer, according to a study published by JAMA Surgery.

Young breast cancer patients undergoing breast conserving surgery see improved prognosis
A new analysis indicates that breast cancer prognoses have improved over time in young women treated with breast conserving surgery.

Read More: Breast Cancer News and Breast Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.