Nav: Home

Spider silk could be used to power microphones in hearing aids, cell phones

October 30, 2017

BINGHAMTON, NY - Would you want a spider web inside your ear? Probably not. But if you're able to put aside the creepy factor, new research from Binghamton University, State University of New York shows that fine fibers like spider silk actually improve the quality of microphones for hearing aids.

Binghamton University distinguished professor Ron Miles and graduate student Jian Zhou recently published a study in titled "Sensing fluctuating airflow with spider silk" that should lead to better microphones for hearing aids than traditional pressure-based systems.

Miles has done a number of studies looking at what we can learn from insects when it comes to hearing. He explained, "We use our eardrums, which pick up the direction of sound based on pressure, but most insects actually hear with their hairs." The spider silk is able to pick up the velocity of the air instead of the pressure of the air.

Mosquitos, flies and spiders all have fine hairs on their bodies that move with the sounds waves traveling through the air. Miles wanted to recreate this type of hearing inside a microphone.

Their microphone improves the directional sensing across a wide variety of frequencies that are often too quiet for microphones to pick up on. For someone with a hearing aid, that means being able to cancel out background noise when having a conversation in a crowded area. The same concept could be applied to the microphone inside cell phones.

Spider silk is thin enough that it also can move with the air when hit by soundwaves. "This can even happen with infrasound at frequencies as low as 3 hertz," said Miles. Sound at that frequency is typically inaccessible. It'd be equivalent to hearing the tectonic plates moving in an earthquake.

The study used spider silk, but Miles explained that any fiber that is thin enough could be used in the same way.

While the spider silk picks up the direction of airflow with great accuracy, that information has to be translated into an electronic signal to be of use.

"We coated the spider silk with gold and put it in a magnetic field to obtain an electronic signal," said Miles. "It's actually a fairly simple way to make an extremely effective microphone that has better directional capabilities across a wide range of frequencies."

The study is a game-changer for microphones but may also tell us something unique about spiders, said Miles. He and Zhou speculate that because spider silk is so good at sensing air flow, it's possible spiders can hear through their own web on top of what they are already known to hear through the small hairs on their bodies.
-end-


Binghamton University

Related Magnetic Field Articles:

Origins of Earth's magnetic field remain a mystery
The existence of a magnetic field beyond 3.5 billion years ago is still up for debate.
New research provides evidence of strong early magnetic field around Earth
New research from the University of Rochester provides evidence that the magnetic field that first formed around Earth was even stronger than scientists previously believed.
Massive photons in an artificial magnetic field
An international research collaboration from Poland, the UK and Russia has created a two-dimensional system -- a thin optical cavity filled with liquid crystal -- in which they trapped photons.
Adhesive which debonds in magnetic field could reduce landfill waste
Researchers at the University of Sussex have developed a glue which can unstick when placed in a magnetic field, meaning products otherwise destined for landfill, could now be dismantled and recycled at the end of their life.
Earth's last magnetic field reversal took far longer than once thought
Every several hundred thousand years or so, Earth's magnetic field dramatically shifts and reverses its polarity.
A new rare metals alloy can change shape in the magnetic field
Scientists developed multifunctional metal alloys that emit and absorb heat at the same time and change their size and volume under the influence of a magnetic field.
Physicists studied the influence of magnetic field on thin film structures
A team of scientists from Immanuel Kant Baltic Federal University together with their colleagues from Russia, Japan, and Australia studied the influence of inhomogeneity of magnetic field applied during the fabrication process of thin-film structures made from nickel-iron and iridium-manganese alloys, on their properties.
'Magnetic topological insulator' makes its own magnetic field
A team of U.S. and Korean physicists has found the first evidence of a two-dimensional material that can become a magnetic topological insulator even when it is not placed in a magnetic field.
Scientists develop a new way to remotely measure Earth's magnetic field
By zapping a layer of meteor residue in the atmosphere with ground-based lasers, scientists in the US, Canada and Europe get a new view of Earth's magnetic field.
Magnetic field milestone
Physicists from the Institute for Solid State Physics at the University of Tokyo have generated the strongest controllable magnetic field ever produced.
More Magnetic Field News and Magnetic Field Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.