Tiny light detectors work like gecko ears

October 30, 2018

Geckos and many other animals have heads that are too small to triangulate the location of noises the way we do, with widely spaced ears. Instead, they have a tiny tunnel through their heads that measures the way incoming sound waves bounce around to figure out which direction they came from.

Facing their own problem of minuscule size and triangulation, researchers from Stanford University have come up with a similar system for detecting the angle of in-coming light. Such a system could let tiny cameras detect where light is coming from, but without the bulk of a large lens.

"Making a little pixel on your photo camera that says light is coming from this or that direction is hard because, ideally, the pixels are very small - these days about 1/100th of a hair," said Mark Brongersma, professor of materials science and engineering who is senior author of a paper about this system, published Oct. 29 in Nature Nanotechnology. "So it's like having two eyes very close together and trying to cross them to see where the light is coming from."

These researchers are working on tiny detectors that could record many characteristics of light, including color, polarity and, now, angle of light. As far as they know, the system they've described in this paper is the first to demonstrate that it's possible to determine angle of light with a setup this small.

"The typical way to determine the direction of light is by using a lens. But those are big and there's no comparable mechanisms when you shrink a device so it's smaller than most bacteria," said Shanhui Fan, professor of electrical engineering, who is a co-author on the paper.

More detailed light detection could support advances in lens-less cameras, augmented reality and robotic vision, which is important for autonomous cars.

From atoms to geckos

If a sound isn't coming from directly over the top of the gecko, one eardrum essentially steals some of the sound wave energy that would otherwise tunnel through to the other. This inference helps the gecko - and about 15,000 other animal species with a similar tunnel - understand where a sound is coming from.

The researchers mimic this structure in their photodetector by having two silicon nanowires - each about 100 nanometers in diameter or about 1/1000th as wide as a hair - lined up next to each other, like the gecko's eardrums. They are positioned so closely that, when a light wave comes in at an angle, the wire closest to the light source interferes with the waves hitting its neighbor, basically casting a shadow. The first wire to detect the light would then send the strongest current. By comparing the current in both wires, the researchers can map the angle of incoming light waves.

Geckos weren't the inspiration for the initial construction of this system. Soongyu Yi, a graduate student in electrical and computer engineering at the University of Wisconsin-Madison who is lead author of the paper, came upon the likeness between their design and geckos' ears after the work had already begun. They were all surprised by the deep level of similarity. As it turns out, the same math that explains both the gecko ears and this photodetector describes an interference phenomenon between closely arranged atoms as well.

"On the theory side, it's actually very interesting to see many of the basic interference concepts that go all the way to quantum mechanics show up in a device that can be practically used," said Fan.

A long-term commitment

This project began when one of the paper's co-authors, Zongfu Yu, was a student in the Fan lab and took the initiative to combine his work there with research by Brongersma and his lab. They made progress but had to put the work on hold while Yu applied for faculty positions and, subsequently, established his lab at the University of Wisconsin-Madison, where he is now an assistant professor of electrical and computer engineering and in whose lab Soongyu Yi works.

Many years later, and after publishing the current proof-of-concept, the researchers said they look forward to building on their results. Next steps include deciding what else they might want to measure from light and putting several nanowires side-by-side to see if they can build an entire imaging system that records all the details they're interested in at once.

"We've worked on this for a long time - Zongfu has had a whole life story between the start and end of this project! It shows that we haven't compromised on quality," Brongersma said. "And it's fun to think that we might be here for another 20 years figuring out all the potential of this system."
Additional co-authors on this paper include Pengyu Fan, Dianmin Lin and Ken Xingze Wang of Stanford, and Nader Behdad and Ming Zhou of the University of Wisconsin-Madison. Brongersma is also a member of Stanford Bio-X, an affiliate of the Stanford Precourt Institute for Energy, and a member of the Wu Tsai Neurosciences Institute at Stanford. Fan is also director of the Edward L. Ginzton Laboratory and a senior fellow at the Stanford Precourt Institute for Energy.

This work was funded by the Office of Naval Research and the Air Force Office of Scientific Research.

Stanford University

Related Engineering Articles from Brightsurf:

Re-engineering antibodies for COVID-19
Catholic University of America researcher uses 'in silico' analysis to fast-track passive immunity

Next frontier in bacterial engineering
A new technique overcomes a serious hurdle in the field of bacterial design and engineering.

COVID-19 and the role of tissue engineering
Tissue engineering has a unique set of tools and technologies for developing preventive strategies, diagnostics, and treatments that can play an important role during the ongoing COVID-19 pandemic.

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.

Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.

Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.

New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.

Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.

Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.

Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.

Read More: Engineering News and Engineering Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.