New technologies in the ocean energy sector

October 30, 2018

While the ocean energy sector is still at an early stage of development, a new report analyses ten future emerging technologies to generate energy from the ocean tides and waves.

An integrated systems approach is necessary for their successful commercialisation.

It still takes a level of almost science fiction fantasy to imagine that we can use the oceans' permanent movement to power our cities and houses.

Yet, such ideas are on designer desks, going through demonstrations of viability, towards possible commercial success.

Moving to economically viable ocean energy technologies is a huge step towards decarbonisation and the growth of the blue economy in many coastal areas.

With only 17 MW compared to 15.8 GW of offshore wind of operating capacity installed in European waters, mostly as demonstration or first-of-a-kind precommercial projects, every technological solution proposed to bridge the gap between R&D stage and the commercialisation of ocean energy devices can be seen for the time being as a future emerging technology.

As part of the European Commission's internal Low Carbon Energy Observatory (LCEO) project, the Joint Research Centre (JRC) is developing an inventory of Future Emerging Technologies relevant to energy supply.

30 experts in the ocean energy analysed the needs for the sector, and the type of innovations to bridge the gap with the market.

The new report, Future emerging technologies for the ocean energy sector: innovation and game-changers offers policy makers and all other ocean energy stakeholders an array of innovations that can bring ocean energy to the market, but it still needs further R&D, supported by private, national or European funding, and that would help maintain European leadership in this emerging sector.

The experts describe state of advancement of each of the technology family, advantages, technological limitations, as well as their technology readiness level.

Emerging industry brimming with ideas

In Europe a large variety of concepts have been developed for ocean energy conversion, with more than 200 different devices proposed.

The experts talk about ten ocean energy technology families, which group together wave or tidal converters, subsystems and components that are characterised by a common operating or design principle.

Tidal energy

In terms of speed of development, the first generation of tidal energy converters is heading the group.

They have reached the pre-commercial stage with the total installed capacity of around 12 MW in Europe and the speed of development is medium, with devices having reached maturity after 10+ years of R&D.

Floating tidal devices do not require heavy and costly foundation systems.

Speed of the technology development is medium/fast (meaning between less than 5 to 15 years), with some floating tidal platforms already at an advanced stage of development.

Third generation tidal energy converters extract energy from a tidal flow or water flow using the sails, kites, or simulating fish-swimming motion.

The speed of development is medium/fast, and is affected by the development of materials and ancillary technology.

Wave energy

As for wave energy, the research goes back 40 years.

The availability of testing facilities and new computational tools are making research more accessible and opening up new opportunities leading to novel approach to the first generation of wave energy concepts.

The advancement of artificial intelligence and learning algorithms offer an opportunity for developing designs which are more efficient.

Development speed is in medium-slow range.

Novel wave energy concepts exploit the material-flexibility and the orbital velocities of water particles to convert wave power to electricity.

They are characterised by an overall simplicity of design compared to first generation wave energy devices.

Yet they are at early stages of development, with no device installed in real sea and the maximum power rating for the device yet to be identified.

Innovative tidal and wave energy power take off

This big group of different approaches on how to extract power from the ocean and convert it into electricity offers many possibilities for innovation and unlocking the potential of ocean energy in Europe.

Direct drive, hydraulic and inertia systems are more advanced.

Mechanical systems can be at a relatively fast pace, while dielectric elastomers offer fast speed of development but require more R&D.

Further information on those concepts is available through Marinet 2 P Horizon 2020 project, the Wave Energy Scotland program and the European Marine Energy Centre list of wave and tidal energy technology.

Conclusions and recommendations for further work

An integrated systems approach is required to develop successful marine energy systems; therefore collaboration with industry and engagement with original equipment manufacturers from the early stage of development is recommended.

System capabilities and requirements should be properly defined and made transparent to increase the effectiveness of future emerging technologies development and applicability to ocean energy technologies.

The transferability of solutions from other sector, as well as the development of new technologies and materials could impact significantly on the speed of development of future emerging technologies for ocean energy.

The impact of the future emerging technologies should be put in the context of the priorities for the ocean energy sector as identified through the Ocean Energy Roadmap and the SET-Plan Implementation Plan.

A further analysis is needed to prioritise which options could have the greatest impact on the sector in achieving short-term goals (2025 targets) and long term ambitions (100 GW of installed capacity by 2050).

This report compiles the outcomes of an international workshop on emerging energy technologies held in March 2019
-end-


European Commission Joint Research Centre

Related Wave Energy Articles from Brightsurf:

Mathematical tools predict if wave-energy devices stay afloat in the ocean
Ocean waves represent an abundant source of renewable energy. But to best use this natural resource, wave-energy converters need to be capable of physically handling ocean waves of different strengths without capsizing.

COVID-19: Second wave for some; others remain in first wave
As the COVID-19 pandemic continues, some locations have experienced decreasing numbers of cases followed by an increase.

Cellular energy audit reveals energy producers and consumers
Researchers at Gladstone Institutes have performed a massive and detailed cellular energy audit; they analyzed every gene in the human genome to identify those that drive energy production or energy consumption.

First measurement of electron energy distributions, could enable sustainable energy technologies
To answer a question crucial to technologies such as energy conversion, a team of researchers at the University of Michigan, Purdue University and the University of Liverpool in the UK have figured out a way to measure how many 'hot charge carriers' -- for example, electrons with extra energy -- are present in a metal nanostructure.

Mandatory building energy audits alone do not overcome barriers to energy efficiency
A pioneering law may be insufficient to incentivize significant energy use reductions in residential and office buildings, a new study finds.

Mapping the energy transport mechanism of chalcogenide perovskite for solar energy use
Researchers from Lehigh University have, for the first time, revealed first-hand knowledge about the fundamental energy carrier properties of chalcogenide perovskite CaZrSe3, important for potential solar energy use.

Harvesting energy from walking human body Lightweight smart materials-based energy harvester develop
A research team led by Professor Wei-Hsin Liao from the Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong (CUHK) has developed a lightweight smart materials-based energy harvester for scavenging energy from human motion, generating inexhaustible and sustainable power supply just from walking.

New discipline proposed: Macro-energy systems -- the science of the energy transition
In a perspective published in Joule on Aug. 14, a group of researchers led by Stanford University propose a new academic discipline, 'macro-energy systems,' as the science of the energy transition.

How much energy storage costs must fall to reach renewable energy's full potential
The cost of energy storage will be critical in determining how much renewable energy can contribute to the decarbonization of electricity.

Shifts to renewable energy can drive up energy poverty, PSU study finds
Efforts to shift away from fossil fuels and replace oil and coal with renewable energy sources can help reduce carbon emissions but do so at the expense of increased inequality, according to a new Portland State University study

Read More: Wave Energy News and Wave Energy Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.