Nav: Home

Cycles of reward: New insight into ADHD treatment

October 30, 2019

Attention-Deficit Hyperactivity Disorder (ADHD) is a widespread condition with complex underlying causes. A stimulant drug called methylphenidate is a common ADHD treatment that impacts the brain's levels of dopamine, a neurotransmitter involved in systems of reward; however, methylphenidate has a potential for abuse, and its therapeutic effects are poorly understood.

To explore methylphenidate's varied interactions with dopamine systems in the brain, researchers at the Okinawa Institute of Science and Technology Graduate University (OIST) in collaboration with scientists at the University of Otago and the University of Auckland in New Zealand, investigated the actions of the drug in rats. Using dopamine cell recordings, electrochemical monitoring and computer modeling, they discovered a type of feedback loop that modulates dopamine levels in the rats' brains in response to the drug. This regulatory process may shed light on methylphenidate's therapeutic properties in ADHD. The researchers' findings are published in Progress in Neurobiology.

"We know quite a bit about how methylphenidate works at the molecular level, but not how it affects greater neural systems. It's still a mystery how this drug improves symptoms of ADHD," said Professor Jeff Wickens of OIST's Neurobiology Research Unit. "This mystery leads us to explore how different parts of the brain interact to produce therapeutic effects."

Unlocking the secrets of dopamine

To carry out their research, the international team administered methylphenidate at a concentration of 5.0 mg/kg to a group of adult male rats, while a control group received no drugs. After surgically implanting electrodes in the rats' brains, the researchers used an electrochemical technique called voltammetry to monitor real-time changes in cellular dopamine concentration in brain regions involved in ADHD. The researchers also took measurements in live brain slices of rats' midbrains and forebrains.

To help understand the data, the scientists at OIST, including technician Kavinda Liyanagama, designed a computer program to model the effects of methylphenidate on dopamine systems.

Neurons release dopamine in different ways: phasic release is characterized by quick, high intensity spikes in the neurotransmitter, often in response to motivational stimuli like drugs or sugary treats. Tonic release, on the other hand, refers to slower, more regular firings of dopamine neurons, and is involved in muscle and joint movements.

Wickens and his collaborators initially thought that, since methylphenidate blocks the reuptake of dopamine by receptors in the brain, that the drug should increase the phasic dopamine signal. Rather, after analyzing their data, the researchers found the opposite: methylphenidate did not increase phasic dopamine. To explain this finding, Wickens suspects that the brain has a remarkably powerful feedback mechanism to keep the brain's dopamine levels in check, even when reuptake is blocked by methyphenidate.

"When you use methylphenidate in the intact brain there's a neural regulation mechanism to compensate for the direct effects of the drug," said Wickens. "Methylphenidate's therapeutic effects could be indirect consequences of this feedback loop."

The computer modeling suggests that methylphenidate primarily impacts the tonic dopamine signal. Shifts in tonic dopamine signaling may activate dopamine receptors in ways that improve the symptoms of ADHD.

Wickens acknowledges that he the study was conducted in healthy rats. The group's next step is to look at this feedback loop in animal models of ADHD.

In addition, Wickens suspects that ADHD is a collection of disorders, warranting combination therapies. Thus, he hopes to explore the mechanisms of other treatments, too.
-end-


Okinawa Institute of Science and Technology (OIST) Graduate University

Related Adhd Articles:

Autism and ADHD share genes
Researchers from the national psychiatric project iPSYCH have found that autism and ADHD share changes in the same genes.
ADHD across racial/ethnic groups
This study of patients from diverse racial/ethnic backgrounds who received care at the Kaiser Permanente Northern California health system looked at how common attention-deficit/hyperactivity disorder (ADHD) diagnoses were over a 10-year period across seven racial/ethnic groups.
Cycles of reward: New insight into ADHD treatment
Researchers at the Okinawa Institute of Science and Technology Graduate University (OIST) in collaboration with scientists at the University of Otago and the University of Auckland in New Zealand, investigated the actions of the drug in rats.
Young mums more likely to have kids with ADHD
Young mothers have a greater chance of having a child with attention deficit hyperactivity disorder (ADHD) according to new research from the University of South Australia.
ADHD medication: How much is too much for a hyperactive child?
When children with ADHD don't respond well to Methylphenidate (MPH, also known as Ritalin) doctors often increase the dose.
Antipsychotic use in youths with ADHD is low, but still cause for concern
A new study eased fears about the proportion of youths with ADHD taking antipsychotic drugs, but still found that many prescriptions may be inappropriate.
How stimulant treatment prevents serious outcomes of ADHD
Analysis quantifies the extent which stimulant treatment reduces serious outcomes in children and young adults with ADHD.
Did Leonardo da Vinci have ADHD?
Leonardo da Vinci produced some of the world's most iconic art, but historical accounts show that he struggled to complete his works.
More sleep may help teens with ADHD focus and organize
Teenagers with attention deficit hyperactivity disorder (ADHD) may benefit from more sleep to help them focus, plan and control their emotions.
Researchers have found the first risk genes for ADHD
A major international collaboration headed by researchers from the Danish iPSYCH project, the Broad Institute of Harvard and MIT, Massachusetts General Hospital, SUNY Upstate Medical University, and the Psychiatric Genomics Consortium has for the first time identified genetic variants which increase the risk of ADHD.
More ADHD News and ADHD Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 3: Shared Immunity
More than a million people have caught Covid-19, and tens of thousands have died. But thousands more have survived and recovered. A week or so ago (aka, what feels like ten years in corona time) producer Molly Webster learned that many of those survivors possess a kind of superpower: antibodies trained to fight the virus. Not only that, they might be able to pass this power on to the people who are sick with corona, and still in the fight. Today we have the story of an experimental treatment that's popping up all over the country: convalescent plasma transfusion, a century-old procedure that some say may become one of our best weapons against this devastating, new disease.   If you have recovered from Covid-19 and want to donate plasma, national and local donation registries are gearing up to collect blood.  To sign up with the American Red Cross, a national organization that works in local communities, head here.  To find out more about the The National COVID-19 Convalescent Plasma Project, which we spoke about in our episode, including information on clinical trials or plasma donation projects in your community, go here.  And if you are in the greater New York City area, and want to donate convalescent plasma, head over to the New York Blood Center to sign up. Or, register with specific NYC hospitals here.   If you are sick with Covid-19, and are interested in participating in a clinical trial, or are looking for a plasma donor match, check in with your local hospital, university, or blood center for more; you can also find more information on trials at The National COVID-19 Convalescent Plasma Project. And lastly, Tatiana Prowell's tweet that tipped us off is here. This episode was reported by Molly Webster and produced by Pat Walters. Special thanks to Drs. Evan Bloch and Tim Byun, as well as the Albert Einstein College of Medicine.  Support Radiolab today at Radiolab.org/donate.