Mass General team publishes on highest resolution brain MRI scan

October 30, 2019

BOSTON - A new paper describes a breakthrough 100 micron resolution scan of the human brain that was created by a multidisciplinary team of Massachusetts General Hospital (MGH) researchers. The paper, which appeared in Scientific Data, highlights the highest resolution MRI scan of the whole human brain to be created to date, the images of which are 1,000 times more detailed than a standard clinical MRI scan.

"This unique dataset has a broad range of investigational, educational and clinical applications that will advance understanding of human brain anatomy in health and disease," says Brian L. Edlow, MD, first author of the paper, associate director of the MGH Center for Neurotechnology and Neurorecovery (CNTR), and director of the Laboratory for NeuroImaging of Coma and Consciousness (NICC).

The MGH team included neuroscientists, neurologists, MRI physicists, engineers, computer scientists and anatomists. The project also required designing and building custom hardware to get the maximum possible resolution. MGH RF Coil Engineer Azma Mareyam designed the specialized MRI instrument for this project. "The RF coil used in a magnetic resonance scanner works as an antenna that transmits and receives signals from the patient or specimen," she explains. "Those signals are then converted into images by other hardware/computer software." The challenge in this case was to place many coils (32) close enough together that they could be fit snugly around the brain but would not interfere with each other. "This was done using many techniques we have developed in professor Lawrence Wald's lab at MGH," she explains.

The project has three main goals. First, it aims to generate insights into the structure of the brain, and connections between its parts. Another goal is to better understand the biology of neurological disorders such as traumatic brain injury and Alzheimer's Disease through a new type of "network-based autopsy" that integrates MRI with histopathology. Finally, the team hopes to stimulate development of new, ultra-high resolution imaging techniques for use in living subjects.

The group, led by co-senior authors Bruce Fischl, PhD, and Andre van der Kouwe, PhD, has been working on this for over a decade, and in June 2019, released the 100 micron resolution MRI scan of a donated brain, including the underlying data, for which investigators already note promising additional uses.

In one application, for example, co-author Andreas Horn, MD, PhD, integrated the data from this scan into a software platform called Lead DBS, which may allow neurologists and neurosurgeons to improve the therapeutic outcome of deep brain stimulation electrode placement in a broad range of disorders, including Parkinson's Disease and obsessive compulsive disorder. Another group, the Fiber Tractrography Lab at University of Pittsburgh, integrated the 100 micron MRI data with 3-dimensional tractography data, which show axonal pathways, to map the connectivity of the human brain. The data have also been integrated with a Neuroanatomy Atlas at Unochapecó University, Brazil.

There has been tremendous interest in this advanced application of MRI. Videos of the 100 micron MRI scan were viewed by more than 1 million people on twitter, youtube, reddit, and facebook within two weeks of release of the data in June.

"Over the next 10 years, we will continue to develop ground-breaking imaging tools to map the human brain at increasingly high resolutions, with a "moon-shot" goal of micron-scale resolution," says Edlow. "We envision a future in which ex vivo MRI and optical images at micron-scale resolution are precisely coregistered to histopathological data and in vivo MRI data. This fully integrated analysis pipeline will open up a new world of opportunities to investigate the pathophysiological basis of neurological disorders, and ultimately, will usher in a new era of pharmacologic, electrophysiologic, and neuromodulatory therapies."
About the Massachusetts General Hospital

Massachusetts General Hospital, founded in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH Research Institute conducts the largest hospital-based research program in the nation, with an annual research budget of more than $1 billion and comprises more than 8,500 researchers working across more than 30 institutes, centers and departments. In August 2019 the MGH was once again named #2 in the nation by U.S. News & World Report in its list of "America's Best Hospitals."

Massachusetts General Hospital

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to