Nav: Home

How do you know it's perfect graphene?

October 30, 2019

Producing structurally perfect graphene and other 2D materials is the secret to tapping into their potential novel electronic and spintronic properties. But how do we know when graphene, the most widely studied 2D material, is perfect-- a defect-free and uniform layer of atoms?

Scientists at the U.S. Department of Energy's Ames Laboratory have discovered an indicator that reliably demonstrates a sample's high quality, and it was one that was hiding in plain sight for decades.

The researchers were investigating samples of graphene using low energy electron diffraction, a technique commonly used in physics to study the crystal structure of the surfaces of solid materials.

What they found didn't follow the accepted rules of diffraction.

"The discovery is a paradox," said Michael Tringides, a senior scientist at Ames Laboratory who investigates the unique properties of 2D materials and metals grown on graphene, graphite, and other carbon coated surfaces. "Textbook diffraction states that the more flawless a material is, the sharper and clearer the diffraction spots, and imperfect materials have low intensity, broader diffraction spots."

But in the case of highly uniform samples of graphene, the diffraction studies not only showed the expected sharp spots, but also a very broad band of diffuse diffraction in the background.

"That result is not intuitive and very strange," said Tringides, "but we find this broad diffraction pattern to be an intrinsic feature to graphene, and when you have it, you have very good graphene. This is a good way to quantitatively measure its structural perfection."

What's more, this strange diffraction pattern was present and visible in the last 25 years of graphene research publications, and yet ignored. "It was a big, noticeable phenomena, and reproducible, and we realized it must be extremely important in some way," said Tringides.

While more theoretical work is needed to fully explain the experimental findings, the scientists believe the broad diffraction phenomenon is caused by the confinement of graphene electrons within a single layer of atoms. According to the fundamentals of quantum mechanics, because the electron position normal to the layer is precisely known, their wave vector must have a spread, which is transferred to the diffracted electrons. This effect is significant for other types of 2D materials as well. With the continued and growing interest in 2D materials for a variety of applications, improving their structural quality will be the key to promising new technologies, said Tringides.

"This work provides an important step towards the ability to optimize graphene and other 2D materials precisely, and tailor their properties for specific applications," he said.

The research is further discussed in the paper, "Diffraction paradox: An unusually broad diffraction background marks high quality graphene," authored by S. Chen, M. Horn von Hoegen, P. A. Thiel, and M. C. Tringides; and published in Physical Review B.

Ames Laboratory is a U.S. Department of Energy Office of Science National Laboratory operated by Iowa State University. Ames Laboratory creates innovative materials, technologies and energy solutions. We use our expertise, unique capabilities and interdisciplinary collaborations to solve global problems.
-end-
Ames Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit https://energy.gov/science.

DOE/Ames Laboratory

Related Graphene Articles:

Graphene: The more you bend it, the softer it gets
New research by engineers at the University of Illinois combines atomic-scale experimentation with computer modeling to determine how much energy it takes to bend multilayer graphene -- a question that has eluded scientists since graphene was first isolated.
How do you know it's perfect graphene?
Scientists at the US Department of Energy's Ames Laboratory have discovered an indicator that reliably demonstrates a sample's high quality, and it was one that was hiding in plain sight for decades.
Graphene is 3D as well as 2D
Graphene is actually a 3D material as well as a 2D material, according to a new study from Queen Mary University of London.
Conductivity at the edges of graphene bilayers
For nanoribbons of bilayer graphene, whose edge atoms are arranged in zigzag patterns, the bands of electron energies which are allowed and forbidden are significantly different to those found in monolayer graphene.
How to purify water with graphene
Scientists from the National University of Science and Technology 'MISIS' together with their colleagues from Derzhavin Tambov State University and Saratov Chernyshevsky State University have figured out that graphene is capable of purifying water, making it drinkable, without further chlorination.
Decoupled graphene thanks to potassium bromide
The use of potassium bromide in the production of graphene on a copper surface can lead to better results.
1 + 1 does not equal 2 for graphene-like 2D materials
Physicists from the University of Sheffield have discovered that when two atomically thin graphene-like materials are placed on top of each other their properties change, and a material with novel hybrid properties emerges, paving the way for design of new materials and nano-devices.
Graphene's magic is in the defects
A team of researchers at the New York University Tandon School of Engineering and NYU Center for Neural Science has solved a longstanding puzzle of how to build ultra-sensitive, ultra-small electrochemical sensors with homogenous and predictable properties by discovering how to engineer graphene structure on an atomic level.
Graphene on the way to superconductivity
Scientists at HZB have found evidence that double layers of graphene have a property that may let them conduct current completely without resistance.
A human enzyme can biodegrade graphene
Graphene Flagship partners discovered that a natural human enzyme can biodegrade graphene.
More Graphene News and Graphene Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab