Microrobots clean up radioactive waste (video)

October 30, 2019

According to some experts, nuclear power holds great promise for meeting the world's growing energy demands without generating greenhouse gases. But scientists need to find a way to remove radioactive isotopes, both from wastewater generated by nuclear power plants and from the environment in case of a spill. Now, researchers reporting in ACS Nano have developed tiny, self-propelled robots that remove radioactive uranium from simulated wastewater. Watch a video of the microrobots in action here.

The accidental release of radioactive waste, such as what occurred in the Chernobyl and Fukushima nuclear plant disasters, poses large threats to the environment, humans and wildlife. Scientists have developed materials to capture, separate, remove and recover radioactive uranium from water, but the materials have limitations. One of the most promising recent approaches is the use of metal-organic frameworks (MOFs) -- compounds that can trap specific substances, including radioactive uranium, within their porous structures. Martin Pumera and colleagues wanted to add a micromotor to a rod-shaped MOF called ZIF-8 to see if it could quickly clean up radioactive waste.

To make their self-propelled microrobots, the researchers designed ZIF-8 rods with diameters about 1/15 that of a human hair. The researchers added iron atoms and iron oxide nanoparticles to stabilize the structures and make them magnetic, respectively. Catalytic platinum nanoparticles placed at one end of each rod converted hydrogen peroxide "fuel" in the water into oxygen bubbles, which propelled the microrobots at a speed of about 60 times their own length per second. In simulated radioactive wastewater, the microrobots removed 96% of the uranium in an hour. The team collected the uranium-loaded rods with a magnet and stripped off the uranium, allowing the tiny robots to be recycled. The self-propelled microrobots could someday help in the management and remediation of radioactive waste, the researchers say.
-end-
The authors acknowledge funding from the Advanced Functional Nanorobots program, the Czech Science Foundation, the Ministry of Education, Youth and Sports of the Czech Republic and the Neuron Benevolent Fund for Support of Science.

The abstract that accompanies this study is available here.

The American Chemical Society, the world's largest scientific society, is a nonprofit organization chartered by the U.S. Congress. ACS is a global leader in providing access to chemistry-related information and research through its multiple databases, peer-reviewed journals and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org.

Follow us on Twitter | Facebook

American Chemical Society

Related Uranium Articles from Brightsurf:

Russian scientists suggested a transfer to safe nuclear energy
Scientists from Far Eastern Federal University (FEFU), Ozersk Technological Institute, and the Russian Academy of Sciences have improved a processing technology of a monazite concentrate which is a mineral raw material employed as a source of rare earth elements and thorium.

Story tips: Molding matter atom by atom and seeing inside uranium particles
Story tips from the Department of Energy's Oak Ridge National Laboratory: Molding matter atom by atom and seeing inside uranium particles

Atomic fingerprint identifies emission sources of uranium
Depending on whether uranium is released by the civil nuclear industry or as fallout from nuclear weapon tests, the ratio of the two anthropogenic, i.e. man-made, uranium isotopes 233U and 236U varies.

Old molecule, new tricks
Fifty years ago, scientists hit upon what they thought could be the next rocket fuel.

Unused stockpiles of nuclear waste could be more useful than we might think
Chemists have found a new use for the waste product of nuclear power -- transforming an unused stockpile into a versatile compound which could be used to create valuable commodity chemicals as well as new energy sources.

Uranium chemistry and geological disposal of radioactive waste
A new paper to be published on Dec. 16 provides a significant new insight into our understanding of uranium biogeochemistry and could help with the UK's nuclear legacy.

Laser-produced uranium plasma evolves into more complex species
When energy is added to uranium under pressure, it creates a shock wave, and even a tiny sample will be vaporized like a small explosion.

Using building materials to monitor for high enriched uranium
A new paper details how small samples of ubiquitous building materials, such as tile or brick, can be used to test whether a facility has ever stored high enriched uranium, which can be used to create nuclear weapons.

Uranium toxicity may be causing high rates of obesity and diabetes in Kuwait
Kuwait has some of the highest rates of obesity and diabetes in the world, and scientists don't know why.

Bio-inspired material targets oceans' uranium stores for sustainable nuclear energy
Scientists have demonstrated a new bio-inspired material for an eco-friendly and cost-effective approach to recovering uranium from seawater.

Read More: Uranium News and Uranium Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.