Nav: Home

Bundlemers (new polymer units) could transform industries

October 30, 2019

From tires to clothes to shampoo, many ubiquitous products are made with polymers, large chain-like molecules made of smaller sub-units, called monomers, bonded together. Now, a team of researchers from the University of Delaware and University of Pennsylvania, with primary support from the U.S. Department of Energy Biomolecular Materials Program, has created a new fundamental unit of polymers that could usher in a new era of materials discovery.

The researchers designed and created rigid, self-assembling, customizable polymer chains by linking together new building blocks called bundlemers--a term coined at UD. They recently described their work in the journal Nature.

To create bundlemers, the team assembles together four individual peptides, themselves short chains of amino acids, into nanoscopic cylinders. The bundlemer cylinders are then linked, together end-to-end through a highly efficient and controlled series of chemical reactions known as 'click' chemistry. The resulting polymer chains are rigid, rod-like molecules that are based in biology yet do not exist in nature. Bundlemer chains can then be modified with components such as synthetic polymers or inorganic nanoparticles to create new hybrid nanomaterials.

"There's a basic premise in materials that if you can control function and structure, then you can essentially build anything," said Chris Kloxin, study author and assistant professor of materials science and engineering and chemical and biomolecular engineering at UD. "We have a very well-defined structural unit, this bundlemer, upon which we have the ability to add chemical functionality at any location."

Because of their rigidity and customizability, bundlemers could be used to design new materials with a wide range of applications, from high-performance fibers to single-use plastics to biologics, medicines that employ biological components instead of traditional chemistries. Biopharmaceutical research and development is a growing area of expertise at the University of Delaware, home to the National Institute of Innovation in Biopharmaceutical Manufacturing (NIIMBL).

The rigidity of bundlemers could also make these materials useful as substitutes for famously strong materials such as the steel in bridges, the silk in parachutes or the Kevlar in bulletproof vests.

Practically every day, co-author Darrin Pochan, chair of the Department of Materials Science and Engineering at UD, and Kloxin come up with a new application to pursue--enough to keep them and their students busy for years.

"Our idea is that these bundlemers truly are building blocks in every sense of the word," said Pochan. "We are going to build many, many materials and technologies out of these building blocks."

The team has applied for one patent already and plans to file more.

The origin of bundlemers

Pochan and co-author Jeffery Saven, professor of chemistry at the University of Pennsylvania, have collaborated since 2012, when they received a National Science Foundation DMREF grant to study designer materials. Kristi Kiick, Blue and Gold Distinguished Professor of Materials Science and Engineering, was also a collaborator on that project.

Saven's computational chemistry group designs and models specific peptide sequences to identify promising candidates for synthesis and characterization. "Our group is involved in designing and identifying what to make, then modelling these systems to try to understand their stability," Saven said about his group's role in the collaboration.

Saven collaborates on new molecule designs with Pochan and now Kloxin, who joined the collaboration later, where they discuss the pros and cons of different peptide sequences and how to best create a new material with a specific property.

Then, at UD, Pochan and Kloxin make the materials.

"It's good to have feedback on important features to include in the calculations," said Saven about the importance of iterative discussions between groups at UD and Penn.

Said Pochan: "We computationally design and then experimentally create the molecules to do the assembly into the bundlemer building blocks," said Pochan. "We are not limited to nature's toolbox."

Still, despite careful planning, the initial experimental results surprised Pochan and Kloxin--in a good way. When they first saw measurements of the bundlemer chain stiffness, they assumed that something was wrong. Usually polymer chains are loose and flexible like spaghetti, but polymers created from bundlemers are more like long, thin, sturdy rods.

"The rigidity was quite surprising and stunning," said Pochan. It wasn't a mistake. Additional testing revealed that bundlemers have a much higher stiffness by weight than almost any other polymers, such as synthetic polymers and DNA.

After synthesizing bundlemers, the research team characterized the materials using transmission electron microscopy and cryogenic transmission electron microscopy in the Keck Center for Advanced Microscopy and Microanalysis. They also confirmed the size and structure of the bundlemers through small-angle neutron scattering experiments at the NIST Center for Neutron Research, which has a cooperative agreement with the University of Delaware for the Center for Neutron Science.

Jeff Caplan, confocal microscopy expert and director of BioImaging at the Delaware Biotechnology Institute, performed Stochastic Optical Reconstruction Microscopy (STORM) Imaging to visualize tiny segments within the bundlemers. Caplan is a co-author on the Nature paper.

This project wouldn't have been possible without the complementary expertise of the principal investigators. Saven excels in computations and theory. Kloxin excels in polymer chemistry. Pochan excels in materials synthesis and characterization.

"We have plenty of overlap with our expertise, but the point is that without one of us, none of this would have happened," said Pochan. "Without facilities, such as UD's Keck Microscopy Lab, the BioImaging Center at the Delaware Biotechnology Institute, and our relationship with NIST and the Center for Neutron Research, this kind of work would not happen."

The future of bundlemers

Next, the team aims to make bundlemers more accessible, easier to synthesize, and scalable.

Scientists around the world could use bundlemers to address a wide variety of grand challenges in engineering. "These are tools for anybody to use, whether you're a chemist, engineer, or physicist," said Pochan. "It's even hard to think of an equivalent material or experimental tool people use widely. It's like a toolbox for anybody to design future things."
-end-


University of Delaware

Related Science Articles:

75 science societies urge the education department to base Title IX sexual harassment regulations on evidence and science
The American Educational Research Association (AERA) and the American Association for the Advancement of Science (AAAS) today led 75 scientific societies in submitting comments on the US Department of Education's proposed changes to Title IX regulations.
Science/Science Careers' survey ranks top biotech, biopharma, and pharma employers
The Science and Science Careers' 2018 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.
Science in the palm of your hand: How citizen science transforms passive learners
Citizen science projects can engage even children who previously were not interested in science.
Applied science may yield more translational research publications than basic science
While translational research can happen at any stage of the research process, a recent investigation of behavioral and social science research awards granted by the NIH between 2008 and 2014 revealed that applied science yielded a higher volume of translational research publications than basic science, according to a study published May 9, 2018 in the open-access journal PLOS ONE by Xueying Han from the Science and Technology Policy Institute, USA, and colleagues.
Prominent academics, including Salk's Thomas Albright, call for more science in forensic science
Six scientists who recently served on the National Commission on Forensic Science are calling on the scientific community at large to advocate for increased research and financial support of forensic science as well as the introduction of empirical testing requirements to ensure the validity of outcomes.
World Science Forum 2017 Jordan issues Science for Peace Declaration
On behalf of the coordinating organizations responsible for delivering the World Science Forum Jordan, the concluding Science for Peace Declaration issued at the Dead Sea represents a global call for action to science and society to build a future that promises greater equality, security and opportunity for all, and in which science plays an increasingly prominent role as an enabler of fair and sustainable development.
PETA science group promotes animal-free science at society of toxicology conference
The PETA International Science Consortium Ltd. is presenting two posters on animal-free methods for testing inhalation toxicity at the 56th annual Society of Toxicology (SOT) meeting March 12 to 16, 2017, in Baltimore, Maryland.
Citizen Science in the Digital Age: Rhetoric, Science and Public Engagement
James Wynn's timely investigation highlights scientific studies grounded in publicly gathered data and probes the rhetoric these studies employ.
Science/Science Careers' survey ranks top biotech, pharma, and biopharma employers
The Science and Science Careers' 2016 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.
Three natural science professors win TJ Park Science Fellowship
Professor Jung-Min Kee (Department of Chemistry, UNIST), Professor Kyudong Choi (Department of Mathematical Sciences, UNIST), and Professor Kwanpyo Kim (Department of Physics, UNIST) are the recipients of the Cheong-Am (TJ Park) Science Fellowship of the year 2016.
More Science News and Science Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Uncounted
First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at Radiolab.org/donate.