Well oriented

October 30, 2020

Polypropylene (PP) is one of the most widely used plastics in the world. By controlling the spatial orientation of the propylene building blocks and additional polar components, it should be possible to create a new generation of attractive, engineered, specialty plastics, with improved wettability or enhanced degradability, based on PP. In the journal Angewandte Chemie, Japanese scientists have introduced the basis for a new class of palladium catalysts for such polymerizations.

The properties of PP depend largely on the spatial orientation of the individual monomers as they are added to the growing chain (tacticity). In atactic PP (aPP) the orientation is random. In syndiotactic PP (sPP) the CH(3)-side groups on the monomer alternately point toward the two sides of the polymer backbone. The most sought-after version--isotactic PP (iPP) in which all of the side groups point the same way--has particularly advantageous mechanical properties. Incorporation of additional functional, polar monomers into iPP is an important step toward the development of novel plastics.

This type of copolymerization is heavily restricted with conventional Ziegler-Natta and metallocene catalysts because typical polar monomers first need to be "masked". This means they must be attached to special protective groups. With nickel and palladium catalysts, it is possible to achieve this unmasked but with significant losses in isotacticity. There has been some success with special nickel and palladium phosphine complexes (a type of phosphorus-containing organic compound), though synthesis of these catalysts is arduous and time-consuming.

Researchers working with Kyoko Nozaki at the University of Tokyo have now developed a new approach that allows more suitable catalysts to be produced much more easily. The spatial orientation of propylene monomers during polymerization is influenced by the special spatial structure (stereogenicity) at certain carbon atoms in the organic menthol substituents on the phosphine. The researchers wanted to develop phosphine compounds that have the required stereogenicity at the phosphorus atom.

To avoid the tedious synthetic challenges faced to date, they developed significantly faster synthetic protocols using storable, modular building blocks and phosphinites (a class of organic compounds containing phosphorus and oxygen). This allowed for the rapid and easy synthesis of many different phosphines and their corresponding palladium complexes. A rapid screening process successfully yielded suitable catalyst candidates.

In this way, the scientists found catalysts that polymerize propylene with polar monomers to form copolymers with particularly high isotacticity--a material they called isotactic polar polypropylene (iPPP).
-end-
About the Author

Dr. Kyoko Nozaki is Professor of Chemistry and Biotechnology at The University of Tokyo. Her main research interest is focused on homogeneous catalysis for polymer synthesis and organic synthesis. She was awarded the Chemical Society of Japan Award in 2020.

http://park.itc.u-tokyo.ac.jp/nozakilab/

Wiley

Related Plastics Articles from Brightsurf:

Bioplastics no safer than other plastics
Bioplastics contain substances that are as toxic as those in ordinary plastics.

A first-of-its-kind catalyst mimics natural processes to break down plastics
A team of scientists led by the U.S. Department of Energy's Ames Laboratory has developed a first-of-its-kind catalyst that is able to process polyolefin plastics, types of polymers widely used in things like plastic grocery bags, milk jugs, shampoo bottles, toys, and food containers.

Plastics, waste and recycling: It's not just a packaging problem
Discussions of the growing plastic waste problem often focus on reducing the volume of single-use plastic packaging items such as bags, bottles, tubs and films.

'Critical' questions over disease risks from ocean plastics
Key knowledge gaps exist in our understanding of how ocean microplastics transport bacteria and viruses -- and whether this affects the health of humans and animals, researchers say.

Plastics, pathogens and baby formula: What's in your shellfish?
The first landmark study using next-generation technology to comprehensively examine contaminants in oysters in Myanmar reveals alarming findings: the widespread presence of human bacterial pathogens and human-derived microdebris materials, including plastics, kerosene, paint, talc and milk supplement powders.

Chemists make tough plastics recyclable
MIT chemists have developed a way to modify thermoset plastics with a chemical linker that makes it much easier to recycle them, but still allows them to retain their mechanical strength.

The many lifetimes of plastics
Many of us have seen informational posters at parks or aquariums specifying how long plastics bags, bottles, and other products last in the environment.

Recycling plastics together, simple and fast
Scientists successfully blended different types of plastics to be recycled together, providing a solution to the environmental problem of plastic waste and adding economic value to plastic materials.

Water replaces toxins: Green production of plastics
A new way to synthesize polymers, called hydrothermal synthesis, can be used to produce important high-performance materials in a way which is much better for the environment.

Untwisting plastics for charging internet-of-things devices
Scientists are unraveling the properties of electricity-conducting plastics so they can be used in future energy-harvesting devices.

Read More: Plastics News and Plastics Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.