Viral Vector Delivers Dystophin Gene To Mouse Muscle

October 30, 1998

University of Michigan
412 Maynard St. Ann Arbor, MI 48109-1399
October 28, 1998 (25)

DENVER---University of Michigan scientists have developed a new generation of "gutted" viral vectors that deliver the gene for dystrophin to the muscles of adult mice with muscular dystrophy without triggering their immune systems to attack the foreign virus. The vector is called a "gutted" virus, because it has been stripped of most of its original genes to make room for the large dystrophin gene.

At last year's American Society for Human Genetics meeting, Jeffrey S. Chamberlain, Ph.D., associate professor of human genetics in the U-M Medical School, reported the vector's ability to induce long-term expression of the full-sized dystrophin protein in an immuno-deficient strain of adult mice with Duchenne muscular dystrophy. At this year's meeting, Giovanni Salvatori, Ph.D., post-doctoral research fellow in Chamberlain's lab, reported the same results in mice with a normal immune system.

"Using this new version of our viral vector, we have induced stable production of dystrophin for at least four months in muscle fibers of adult, dystrophic mice with normal immune systems," Salvatori said. "Removing a reporter gene called LacZ from the vector was the key to reducing the vector's strong immunogenic effect. Although we still see a small immune response, it peaks after 30 days and does not appear to adversely affect the ability of mouse muscle to take up the vector and produce dystrophin."

A new cell packaging line, also under development at the U-M, will make it possible to produce large amounts of the vector without contamination by other proteins or viruses that could trigger an immune response in humans, according to Salvatori.

The result is significant, because stability and immune response were two major problems that remained to be solved in mice before the U-M's dystrophin vector could be tested for safety and effectiveness in humans. Chamberlain and Jerry Mendell, M.D., of Ohio State University Medical Center, plan to begin testing the vector for safety in humans in the spring of 1999.

Dystrophin is a protein critical for normal maintenance of muscle tissue. Muscular dystrophy is caused by mutations in a large, complex gene which contains instructions telling muscle cells how to produce dystrophin. Because they lack the genetic code to produce dystrophin, children with muscular dystrophy gradually lose muscle tissue and die of heart or respiratory failure.

For eight years, Chamberlain and his U-M research team have been overcoming technical obstacles to an effective gene therapy treatment for muscular dystrophy. They have focused on using modified adenoviruses---the same type of virus that causes colds---as delivery vehicles, because they have a natural ability to enter muscle cells and deliver the dystrophin gene. Chamberlain is a member of the U-M Department of Human Genetics and also is affiliated with the Center for Gene Therapy in the U-M Health System.

Current collaborators in the U-M program to develop new gene therapy viral vectors for dystrophin include Ph.D. research fellows Catherine Barjot, Catherine Begy, Christiana DelloRusso, Dennis Hartigan-O'Connor, Ann Saulino and Michael Hauser, who is now at Duke University.

The work is funded by the National Institutes of Health, the Muscular Dystrophy Association and a private foundation established by a Birmingham, Mich., couple, Chip and Betsy Erwin, to support the U-M research program.
-end-


University of Michigan

Related Immune Response Articles from Brightsurf:

Boosting chickens' own immune response could curb disease
Broiler chicken producers the world over are all too familiar with coccidiosis, a parasite-borne intestinal disease that stalls growth and winnows flocks.

Cells sacrifice themselves to boost immune response to viruses
Whether flu or coronavirus, it can take several days for the body to ramp up an effective response to a viral infection.

Children's immune response more effective against COVID-19
Children and adults exhibit distinct immune system responses to infection by the virus that causes COVID-19, a finding that helps explain why COVID-19 outcomes tend to be much worse in adults, researchers from Yale and Albert Einstein College of Medicine report Sept.

Which immune response could cause a vaccine against COVID-19?
Immune reactions caused by vaccination can help protect the organism, or sometimes may aggravate the condition.

Obesity may alter immune system response to COVID-19
Obesity may cause a hyperactive immune system response to COVID-19 infection that makes it difficult to fight off the virus, according to a new manuscript published in the Endocrine Society's journal, Endocrinology.

Immune response to Sars-Cov-2 following organ transplantation
Even patients with suppressed immune systems can achieve a strong immune response to Sars-Cov-2.

'Relaxed' T cells critical to immune response
Rice University researchers model the role of relaxation time as T cells bind to invaders or imposters, and how their ability to differentiate between the two triggers the body's immune system.

A novel mechanism that triggers a cellular immune response
Researchers at Baylor College of Medicine present comprehensive evidence that supports a novel trigger for a cell-mediated response and propose a mechanism for its action.

Platelets exacerbate immune response
Platelets not only play a key role in blood clotting, but can also significantly intensify inflammatory processes.

How to boost immune response to vaccines in older people
Identifying interventions that improve vaccine efficacy in older persons is vital to deliver healthy ageing for an ageing population.

Read More: Immune Response News and Immune Response Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.