Innermost secrets of the atom

October 31, 2000

After a 40-year search, physicists have finally caught a glimpse of a rare form of radioactivity in which a nucleus spits out two protons at the same time.

The researchers believe the protons emerge stuck together as a pair-a unique configuration that will give a an important insight into the strong nuclear force that glues the particles in nuclei together. "This might provide us with a new way of looking at how nucleons interact," says Philip Woods, a nuclear physicist at the University of Edinburgh.

There are only a few ways in which unstable nuclei can transform themselves. They can either split apart or chuck out one of a small repertoire of particles, such as a neutron or a helium-4 nucleus-two protons and two neutrons. Decades ago, nuclear theorists predicted that this list should include di-proton decay, where two protons fly away stuck together as a helium-2 nucleus. But researchers could never be sure they were seeing such decays.

Physicists hope that by studying di-proton decay they will learn about the arrangement of protons inside the nucleus and how they escape as a pair. "It could tell us something about the strength of the pairing interaction in the strong nuclear force," says Bertram Blank of the Centre for Nuclear Studies in Bordeaux-Gradignan, France. "Right now we know very little about this."

Researchers have known since the 1980s that decaying radioactive nuclei emit two protons. But they could not confirm whether they came out at the same time, or just very quickly one after the other. Now a team using the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory in Tennessee has found a way to make sequential emission impossible.

They did this by firing a beam of fluorine-17 atoms at a thin plastic surface rich in hydrogen atoms. The fluorine grabs hydrogen from the plastic and is converted into neon-18, which then decays to oxygen-16. If the neon-18 is in a particular excited state, it is energetically impossible for it to decay by emitting only one proton. "That's the clever part," says team member Alfredo Galindo-Uribarri. "There's no intermediate step of the ladder." So the atoms are forced to emit two protons at once to become oxygen-16.

There is still a possibility that the protons could be leaving simultaneously but separately in a process called democratic emission. Since these protons probably weren't "living together" inside the nucleus, says Galindo-Uribarri, they would tell us little about the strong nuclear force. But his colleague Jorge Gomez del Campo has few doubts. "I'm convinced we're seeing helium-2 emission."

Galindo-Uribarri says they'll need a bigger detector-due to be up and running early next year-to decide for sure. The team has submitted a paper to Physical Review Letters.
Author: Nicola Jones

New Scientist issue: 4th November 2000

Please mention New Scientist as the source of this story and, if publishing online, please carry a hyperlink to:

New Scientist

Related Atoms Articles from Brightsurf:

How to gently caress atoms
It is extremely difficult to study oxygen molecules on the metal oxide surface without altering them.

'Hot and messy' entanglement of 15 trillion atoms
In a study published in Nature Communications, ICFO, HDU and UPV researchers report the production of a giant entangled state that may help medical researchers detect extremely faint magnetic signals from the brain.

Exciting apparatus helps atoms see the light
Researchers in the Light-Matter Interactions for Quantum Technologies Unit at the Okinawa Institute of Science and Technology Graduate University (OIST) have generated Rydberg atoms - unusually large excited atoms - near nanometer-thin optical fibers.

Manipulating atoms to make better superconductors
A new study by University of Illinois at Chicago researchers published in the journal Nature Communications shows that it is possible to manipulate individual atoms so that they begin working in a collective pattern that has the potential to become superconducting at higher temperatures.

Grabbing atoms
In a first for quantum physics, University of Otago researchers have 'held' individual atoms in place and observed previously unseen complex atomic interactions.

Chemists allow boron atoms to migrate
Organic molecules with atoms of the semi-metal boron are important building blocks for synthesis products to produce drugs and agricultural chemicals.

2D materials: arrangement of atoms measured in silicene
Silicene consists of a single layer of silicon atoms. In contrast to the ultra-flat material graphene, which is made of carbon, silicene shows surface irregularities that influence its electronic properties.

Atoms don't like jumping rope
Nanooptical traps are a promising building block for quantum technologies.

2000 atoms in two places at once
The quantum superposition principle has been tested on a scale as never before in a new study by scientists at the University of Vienna.

Single atoms as catalysts
Only the outermost layer of a catalyst can play a role in chemical reactions.

Read More: Atoms News and Atoms Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to