New cancer-fighting virus kills invasive brain cells

October 31, 2006

CALGARY - Researchers funded by The Terry Fox Foundation and the Canadian Cancer Society have found that a cancer-fighting virus called VSV kills the most malignant form of brain cancer in mice.

The team also discovered that the virus can be given intravenously and targets invasive tumour cells.

The research team first modified the virus by altering one of the genes to make it safer in normal cells but still able to kill cancer cells. They then used a new way of delivering the virus - intravenously instead of directly into the tumour - and were able to target the main tumour as well as the tumour cells that had spread from the main mass.

The study was led by Dr. Peter Forsyth, a medical oncologist with the Alberta Cancer Board and a professor of oncology, neurosciences, biochemistry and molecular biology at the University of Calgary. The study is published in the Nov. 1 issue of the Journal of the National Cancer Institute.

The brain tumour cells that invade into the surrounding normal brain are usually "hidden" from current treatments and are the ones that usually lead to a disease recurrence. The research using the vesicular stomatitis virus (VSV) was conducted on mice as well as on tumour specimens from patients with an aggressive form of brain cancer called malignant glioma.

"These findings are an excellent example of the great value of scientific collaboration," says Darrell Fox, national director of The Terry Fox Foundation. "Dr. Forsyth is part of a pioneering group of researchers that are sharing their expertise and benefiting from the knowledge of others working in this exciting new area of anti-cancer treatment."

"Research into viruses that target cancer is a promising new avenue in the fight against this disease," says Dr. Barbara Whylie, CEO of the Canadian Cancer Society. "We look forward to the possibility of this research leading to more effective treatments for this devastating disease."

Despite dramatic advances in the treatment of malignant glioma, one of the most common types of nervous system cancers in adults, the prognosis of patients has not improved substantially in the past 30 years. While there is typically initial success in treatment, the cancer cells usually spread beyond the main tumour and the disease recurs in another part of the body. When this happens, the disease often becomes resistant to standard chemotherapy treatment.

"An ideal cancer-fighting virus should have effective delivery into multiple sites within the tumour, evade the body's immune responses, reproduce rapidly, spread within the tumour and infect cells that have spread. In this study, that's exactly what we found that VSV has done when injected intravenously," says Dr. Forsyth.

The researchers tested VSV on 14 cell lines of malignant glioma and found that the virus infected and killed all cell lines. The normal cell lines - those that did not contain malignant glioma cells - were not affected.

"One of the limitations to the use of these viruses in patients is the difficultly in getting a sufficient amount of virus to the cancer," says Dr. Forsyth. "While these are very early results, we are very encouraged to find that delivering VSV intravenously attacks the cancer cells and not normal cells. From a patient's point of view, it is obviously a lot easier to be treated with a few intravenous treatments rather than having several surgeries to inject the treatment directly into your brain."

In 2006, an estimated 2,500 Canadians will be diagnosed with brain cancer and 1,670 will die of it. Even with the best available treatments - usually surgery and chemotherapy or radiation - patients with malignant glioma survive, on average, just one year.
-end-
The Terry Fox Foundation's mission is to maintain the principles of Terry Fox while raising money for cancer research through the annual Terry Fox Run, memoriam donations and planned gifts. This year, the Foundation, through the National Cancer Institute of Canada, is funding $20 million in research across the country.

The Canadian Cancer Society is a national community-based organization of volunteers whose mission is to eradicate cancer and to enhance the quality of life of people living with cancer. It is the largest charitable funder of cancer research in Canada. This year, the Society is funding more than $47 million in leading-edge research projects across the country. When you want to know more about cancer, visit our website at www.cancer.ca or call our toll-free, bilingual Cancer Information Service at 1 888 939-3333.

Dr. Peter Forsyth will be available for interviews in his laboratory on Nov. 1 from 10 a.m. to 1 p.m. MT. To schedule an interview on this date, please contact:

Alexa Giorgi
416-934-5681
agiorgi@cancer.ca

Alberta Cancer Board

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.