Darach Watson receives Lundbeck Research Prize

October 31, 2013

Darach Watson has been awarded the Lundbeck Foundation Research Prize for Young Scientists for his outstanding and innovative research in astrophysics, where he has developed a groundbreaking method for measuring distances in the cosmos using the light from distant quasars. The result was selected by Physics World as one of the year's most important breakthroughs in physics.

Darach Watson is from Ireland and received his PhD from University College in Dublin. He came to Denmark in 2003 and has been a core member of the Dark Cosmology Centre at the Niels Bohr Institute at the University of Copenhagen since 2005. He is a leading expert in X-ray astronomy and has played a key role in the important developments in the research of supernovae (exploding massive stars) and gamma-ray bursts (violent outbursts of gamma radiation.

"His research style is original and inventive and by combining different techniques and ideas, he creates new knowledge," explains Jens Hjorth, professor and head of the Danish National Research Foundation's Dark Cosmology Centre at the Niels Bohr Institute.

New groundbreaking methods

Darach Watson has broken new ground in several areas. In 2006, he developed a new method to study the properties of cosmic dust. The method is now one of the most advanced for studying the detailed properties of cosmic dust in distant galaxies. In 2011, he made his most important discovery to date. He developed a new method for measuring long distances in space using the light from quasars (active black holes). Again, it was ability to think differently, innovatively and originally that gave him the idea.

"During a lecture, as one of my colleagues was talking about quasars, I suddenly got the idea that if the brightness of the quasar was related to the size of the gas cloud surrounding it and if you could measure the size of this cloud, you could calculate the distance to the quasar," explains Darach Watson. The idea proved to be brilliant. He explains that quasars have many advantages. They are common throughout the universe and they are stable sources that do not fade and disappear after a short time like supernovae. They are also extremely luminous and can be observed at much greater distances than other sources for distance measurement. Most important, he points out, is that the measurements can be very accurate.

History - Chemistry - Physics - Astrophysics

But what was it exactly that led him to astrophysics?

"I always knew I wanted to do a PhD. My father was a professor of Irish and Dean of the Faculty of Celtic Studies and my mother had a PhD in history. I was interested in many topics and when I was in my last year of secondary school, I talked with my mother about what I should choose to study at university: chemistry or history. She said I could always become a professional research scientist and an amateur historian, but it was almost impossible to be an amateur scientist. I followed her advice and chose chemistry. Halfway through my studies, I discovered what really excited me were the physical processes; what the elements could do and what the physical mechanism was. At the same time, I looked at the curriculum for physics - superfluidity, high-energy particle physics, relativity theory and gravity, superconductivity, plasmas - and I thought it sounded incredibly exciting. So I switched to physics. When I had to decide what to do my PhD on, I discovered that astrophysics was the most interesting branch of physics," explains Darach Watson.

Enthusiastic research

Suddenly, he got a chance to work with gamma-ray bursts - explosions of massive stars, the most violent explosions in the universe since the Big Bang - and he jumped at the opportunity. They managed to obtain the first high-quality X-ray spectrum of a gamma-ray burst and discovered the signature of a supernovae in that spectrum. He can still remember the walk home after the discovery, "I was so elated," he explains. It is this excitement that is still the driving force for his research in astrophysics. But history has not been forgotten.

"What I find peculiar is that my love for and interest in history has crept into my science. My research is related to the history of the universe on a large scale: how it was formed and evolved, how stars and galaxies develop over time and how we ended up where we are now," says Darach Watson thoughtfully and welcomes the recognition his research has now received with the Lundbeck Foundation Research Prize for Young Scientists.
For more information contact:

Darach Watson, Associate professor, Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, +45 3532-5994, darach@dark-cosmology.dk

University of Copenhagen - Niels Bohr Institute

Related Supernovae Articles from Brightsurf:

FSU-led research team discovers unique supernova explosion
A 7-member international research team led by Florida State University Assistant Professor of Physics Eric Hsiao discovered a supernova that could help uncover the origins of the group of supernovae this star belongs to.

Discovery lays blame on supernova for extinction event nearly 360 million years ago
Between a decline in biodiversity and a series of extinction events, the Late Devonian period was not the most hospitable time on Earth.

New insights about the brightest explosions in the Universe
Swedish and Japanese researchers have, after ten years, found an explanation to the peculiar emission lines seen in one of the brightest supernovae ever observed -- SN 2006gy.

New study sheds light on conditions that trigger supernovae explosions
For the first time, researchers were able to demonstrate the process of detonation formation using both experiments and numerical simulations carried out on supercomputers.

Scientists observe year-long plateaus in decline of type Ia supernova light curves
A team of scientists, including a researcher from Queen's University Belfast, have discovered that the fading of infrared light following Type Ia supernovae explosions can be interrupted, with brightness staying the same for up to a year.

Hubble sets sights on an explosive galaxy
When massive stars die at the end of their short lives, they light up the cosmos with bright, explosive bursts of light and material known as supernovae.

Subaru Telescope captures 1800 exploding stars
The Subaru Telescope has captured images of more than 1800 exploding stars in the Universe, some located 8 billion light years from Earth.

Researchers wonder if ancient supernovae prompted human ancestors to walk upright
Supernovae bombarded Earth with cosmic energy starting as many as 8 million years ago, with a peak some 2.6 million years ago, initiating an avalanche of electrons in the lower atmosphere and setting off a chain of events that feasibly ended with bipedal hominins.

Stars exploding as supernovae lose their mass to companion stars during their lives
Stars over eight times more massive than the sun end their lives in supernovae explosions.

Zwicky Transient Facility spots a bumper crop of supernovae, black holes and more
The Zwicky Transient Facility (ZTF), an automated sky survey project based at Caltech's Palomar Observatory near San Diego, California, has produced its first bounty of new results.

Read More: Supernovae News and Supernovae Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.