Scientists seek cure for devastating witches' broom disease of the chocolate tree

October 31, 2014

In the early 1900s, Brazil was the world's largest producer of cocoa. Chocolate trees (Theobroma cacao) were cultivated in a 800, 000 ha region of rainforest in the state of Bahia, beneath a dense canopy of native shade trees. Whereas the surrounding rainforest was a biodiversity hotspot, the chocolate trees, which were derived mainly from a handful of seeds introduced in the mid 1700s, had very low levels of genetic variation. According to Brazilian scientist Gonçalo Pereira, "This scenario created a very romantic, but extremely fragile situation". Genetic variation is important for a population's survival, as genetically variable populations are more resistant to pathogens. In 1989, disaster struck in the form of a devastating fungus named Moniliophthora perniciosa. In a ten-year period, the fungus eradicated around 70 percent of Brazil's chocolate trees, resulting in an economic and social catastrophe that affected two million people.

At one stage of its lifecycle, Moniliophthora perniciosa takes on the form of enchanting pink mushrooms that seem to come straight from a fairytale (see picture). For the chocolate tree, however, M. perniciosa spells trouble. These mushrooms are filled with millions of spores that, once released, can enter a susceptible chocolate tree through surface wounds and tiny gaps called stomata and slowly kill the tree. Because infected trees develop bizarre green outgrowths that resemble brooms, the disease is known as witches' broom disease. Two to three months after infection, the brooms turn brown and begin to perish. The fungus then completes its lifecycle by once again giving rise to clusters of spore-producing mushrooms. There is no known cure for this devastating disease.

In 2000, a team of scientists led by Gonçalo Pereira of the Universidade Estadual de Campinas in Brazil initiated the Witches' Broom Genome Project, with the long-term aim of developing a cure for witches' broom disease. A study to be published next week in The Plant Cell represents the culmination of their research to date. The team used a technique known as dual RNA-seq analysis to monitor the interaction between the M. perniciosa fungus and the chocolate tree. This technique allows scientists to reconstruct the battlefield between the chocolate tree and the fungus in unprecedented detail, by providing a readout of genes that are affected in the plant and the fungus during the course of witches' broom disease. "Knowing the molecular and physiological basis of a disease is an important step towards developing effective control strategies," says study author Paulo Teixeira. Using healthy plants as a reference point, the scientists identified 1,967 genes that exhibited unique activities in the green broom structures of infected chocolate trees. An analysis of these genes showed that fungal infection triggers massive changes in the metabolism of the chocolate tree. Additionally, the scientists discovered 8,617 fungal genes that were active in green brooms. Using the Witches' Broom Disease Transcriptome Atlas, a publicly available online tool developed by Pereira's team to support studies of witches' broom disease, the scientists identified 433 fungal genes that were particularly active in green brooms. Many of these genes encoded proteins with presumed functions in the fungal disease mechanism. Study author Daniela Thomazella explains that "The discovery of sets of fungal genes that are most likely involved in pathogenicity paves the way for the development of targeted treatments of the disease". Indeed, the authors are already using the results of this study to develop a novel fungicide that specifically targets M. perniciosa. In addition to increasing our knowledge of a devastating tropical disease, lead scientist Pereira maintains that this work provides an important basis for future studies that aim to improve agricultural sustainability and global food security.
-end-
Author:

Kathleen L. Farquharson, PhD
kfarquharson@aspb.org
Science Editor, The Plant Cell
http://orcid.org/0000-0002-8032-0041
Tel: 206-324-2126

American Society of Plant Biologists

Related Fungus Articles from Brightsurf:

International screening of the effects of a pathogenic fungus
The pathogenic fungus Candida auris, which first surfaced in 2009, is proving challenging to control.

Research breakthrough in fight against chytrid fungus
For frogs dying of the invasive chytridiomycosis disease, the leading cause of amphibian deaths worldwide, the genes responsible for protecting them may actually be leading to their demise, according to a new study published today in the journal Molecular Ecology by University of Central Florida and the Smithsonian Conservation Biology Institute (SCBI) researchers.

Researchers look to fungus to shed light on cancer
A team of Florida State University researchers from the Department of Chemistry and Biochemistry found that a natural product from the fungus Fusicoccum amygdali stabilizes a family of proteins in the cell that mediate important signaling pathways involved in the pathology of cancer and neurological diseases.

The invisibility cloak of a fungus
The human immune system can easily recognize fungi because their cells are surrounded by a solid cell wall of chitin and other complex sugars.

Taming the wild cheese fungus
The flavors of fermented foods are heavily shaped by the fungi that grow on them, but the evolutionary origins of those fungi aren't well understood.

Candida auris is a new drug-resistant fungus emerging globally and in the US early detection is key to controlling spread of deadly drug-resistant fungus
Early identification of Candida auris, a potentially deadly fungus that causes bloodstream and intra-abdominal infections, is the key to controlling its spread.

Genetic blueprint for extraordinary wood-munching fungus
The first time someone took note of Coniochaeta pulveracea was more than two hundred years ago, when the South African-born mycologist Dr Christiaan Hendrik Persoon mentioned it in his 1797 book on the classification of fungi.

How a fungus can cripple the immune system
An international research team led by Professor Oliver Werz of Friedrich Schiller University, Jena, has now discovered how the fungus knocks out the immune defenses, enabling a potentially fatal fungal infection to develop.

North American checklist identifies the fungus among us
Some fungi are smelly and coated in mucus. Others have gills that glow in the dark.

Tropical frogs found to coexist with deadly fungus
In 2004, the frogs of El Copé, Panama, began dying by the thousands.

Read More: Fungus News and Fungus Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.