Bladderwrack: Tougher than suspected

October 31, 2014

It is up to 30 centimetres long, it has a green-brown color and is probably known to every beach walker on the North and Baltic Sea: the bladderwrack, a seaweed, which is common on the coasts of the whole North Atlantic area. The bladderwrack provides food and habitat for many other organisms. Its abundance is considered to be an indication of whether a coastal ecosystem is intact or not. Especially in the German Baltic Sea, however, the populations have declined considerably in the past decade. The reasons for this are not yet fully known. "Against this background, it is important to know how environmental changes affect the bladderwrack and why," says biologist Dr. Mahasweta Saha from GEOMAR Helmholtz Centre for Ocean Research Kiel.

As the climate changes, the temperature of the Baltic Sea is rising. The strong input of nutrients in recent years has also led to greater water turbidity and reduced light availability. Therefore, it seems likely that these changes are partly responsible for the decline of bladderwrack populations. But a new study published today in the international science journal PLOS ONE shows that the bladderwrack responds more robustly to these environmental changes than previously thought. "At least the defense against its initial enemies, i.e bacterial foulers that may promote further fouling upon the alga's surface, works even at high temperatures and long periods of darkness," explains Dr. Saha, who is the lead author of the study.

Bacteria generally play a crucial role in the life of seaweeds. Also the bladderwrack lives in symbiosis with many types of bacteria that feed it with certain growth factors and nutrients. On the other hand, some other bacterial species can harm the seaweed. To deter them, Fucus produces different chemical compounds, as Dr. Saha has shown in some of her previous studies. "Until recently one of these compounds was only known to function as a pigment. That it can also play a protective role, was a sensation," the biologist says.

In order to find out whether the delicate system of defensive substances may be affected by environmental changes, the scientists exposed bladderwrack from the Baltic Sea in controlled environmental chambers to increased average temperatures of up to 25 degrees Celsius. Other specimens were held in open experimental chambers on pontoons in the Kiel Fjord ('Benthocosms'). "With the help of special foils we created different light conditions - from normal daylight without changes to permanent darkness," says Dr. Florian Weinberger from GEOMAR, co-author of the current study.

In subsequent analyses, the researchers noted that under changed light or temperature conditions the production of single defensive compounds decreased in comparison to unchanged conditions. "But thanks to the mix of defensive substances the defense as a whole remained effective even at the highest simulated temperatures and in total darkness," says Saha.

The Kiel researchers also found that the same substances that fight off harmful bacteria, attract other bacteria useful for the bladderwrack. "This is also a new finding," said Dr. Weinberger.

Overall, the study demonstrates that defense mechanisms and symbiotic relationships in bladderwrack are much more complicated than previously thought, the researchers say. "If we want to understand exactly why the bladderwrack responds to certain environmental changes, we must know better its metabolism and its relationship to other organisms such as the bacteria," says Saha.
-end-


Helmholtz Centre for Ocean Research Kiel (GEOMAR)

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.