A new generation of storage -- ring

October 31, 2014

A bright synchrotron source that emits over a wide part of the electromagnetic spectrum from the infrared to hard X-rays is currently being built in Lund, Sweden. The MAX IV facility presents a range of technical challenges for the team putting together its component parts in a storage - ring synchrotron system that will have a circumference of just a few hundred metres. Nevertheless, if these various challenges can be addressed then an entirely new class of experiments that require source brightness and transverse coherence will be possible.

Pedro Tavares and colleagues of Lund University provide details of the obstacles they face [Tavares et al. (2014). J. Synchrotron Rad. 21, 862-877; doi:10.1107/S1600577514011503]. The facility has two electron storage rings that operate at 3 and 1.5 GeV, which Tavares explains are optimized for the hard X-ray and soft X-ray/vacuum ultraviolet spectral ranges, respectively. A linear accelerator, which also operates at 3 GeV, injects into both rings but can also drive X-ray pulses as short as 100 fs.

To confine the total circumference to just 528 m, the 3 GeV ring employs a multibend achromat (MBA) lattice. It is this design feature that gives rise to many of the technical issues that the team hopes to address. First, it needs a large number of magnets per achromat and these need to be compact yet powerful. Secondly, the design leads to small - aperture vacuum chambers that result in low vacuum conductance and the need for distributed pumping as well as for the distributed absorption of heat deposited by the synchrotron radiation. There is also a requirement to accommodate a low main radio frequency (100 MHz) and to lengthen the electron bunches to alleviate multiple scattering within the bunches as well as to avoid collective effects driven by, amongst other effects, the chamber wall resistivity.

The team details solutions to the various problems with regard to the MAX IV 3 GeV ring and presents its lattice design as well as the engineering approaches that will overcome the technical issues. "As the first realisation of a light source based on the MBA concept, the MAX IV 3 GeV ring offers an opportunity for validation of concepts that are likely to be essential ingredients of future diffraction-limited light sources," the team concludes. "Regarding the next steps in the MAX IV Project, we are currently involved with the installation of the 3 GeV ring, and commissioning is planned to start mid - 2015," Tavares told us.
The Tavares paper forms part of the special issue in the Journal of Synchrotron Radiation: Diffraction - Limited Storage Rings and New Science Opportunities. Guest Editors: Mikael Eriksson and J.Friso van der Veen.

International Union of Crystallography

Related Electron Bunches Articles from Brightsurf:

Attosecond boost for electron microscopy
A team of physicists from the University of Konstanz and Ludwig-Maximilians-Universit√§t M√ľnchen in Germany have achieved attosecond time resolution in a transmission electron microscope by combining it with a continuous-wave laser -- new insights into light-matter interactions.

Understanding electron transport in graphene nanoribbons
New research published in EPJ Plus aims to better understand the electron transport properties of graphene nanoribbons (GNRs) and how they are affected by bonding with aromatics - a key step in designing technology such as chemosensors.

Efficient valves for electron spins
Researchers at the University of Basel in collaboration with colleagues from Pisa have developed a new concept that uses the electron spin to switch an electrical current.

Measuring electron emission from irradiated biomolecules
Through a study published in EPJ D, researchers have successfully determined the characteristics of electron emission when high-velocity ions collide with adenine - one of the four key nucleobases of DNA.

Exploring mass dependence in electron-hole clusters
A study published in EPJ B reveals that the behaviour of one type of three-particle cluster displays a distinct relationship with the ratio between the masses of its particles.

Attosecond control of an atomic electron cloud
Researchers at SAGA Light Source, the University of Toyama, Hiroshima University and the Institute for Molecular Science have demonstrated a method to control the shape and orientation of an electron cloud in an atom by tuning the attosecond spacing in a double pulse of synchrotron radiation.

Electron correlations in carbon nanostructures
Graphene nanoribbons are only a few carbon atoms wide and have different electrical properties depending on their shape and width.

The fast dance of electron spins
Metal complexes show a fascinating behavior in their interactions with light, which for example is utilized in organic light emitting diodes, solar cells, quantum computers, or even in cancer therapy.

Novel mechanism of electron scattering in graphene-like 2D materials
Suggesting an unconventional way to manipulate the properties of 2D materials in the presence of a Bose-Einstein condensate, and an alternative strategy to design high-temperature superconductors.

Switching electron properties on and off individually
Electrons have different properties - and they all can be used to create order in solid objects.

Read More: Electron Bunches News and Electron Bunches Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.